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Abstract
As the second biggest economy in the world, China has been experiencing significant impacts of global climate change. 
Developing future projections of regional climate over China is an indispensable step for designing appropriate mitigation 
and adaptation strategies against future climate change. To this end, this study focuses on exploring how the regional cli-
mate over China, including the mean and extreme climate, will be affected in the context of global warming throughout this 
century. The RegCM model is used to develop high-resolution climate scenarios for the whole country of China driven by 
boundary conditions of the Geophysical Fluid Dynamics Laboratory (GFDL) model under the Representative Concentration 
Pathways (RCPs). RegCM performance on simulating the present climate over China is evaluated and the results indicate 
that it is capable of reproducing the spatial distributions of temperature and precipitation. Future projections from RegCM 
suggest that an increase of 2 °C in daily mean temperature is expected in China by the end of the twenty-first century under 
RCP4.5 while an increase of 4 °C would be seen under RCP8.5. The Tibetan Plateau is likely to expect the most substantial 
temperature increase as well as the most significant decrease in extreme cold climate in China. In comparison, the annual 
total precipitation over China is projected to increase by 58 mm/year at the end of the twenty-first century under RCP4.5 and 
by 71 mm/year under RCP8.5. The projected changes in precipitation show apparent spatial variability due to the influences 
of local topography and land cover/use.
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1  Introduction

Climate change has comprehensive and profound influences 
on every aspect of human lives. Impacts of climate change 
over China, as identified in the Intergovernmental Panel on 
Climate Change (IPCC) Fifth Assessment Report, include 
reduced soil moisture in the Central North and Northeast 
China, an extension of corals in the East China Sea, and 
a total decline in wheat and maize yields (IPCC 2014). In 
addition, climate change has impacts on extreme weather 
and climate events such as long-lasting heat waves and 
frequent flooding and droughts (Wang et al. 2015a; Qian 
and Zhu 2001), and human health such as the re-emerging 
of Schistosomiasis (Zhou et al. 2008). Such impacts may 
assume various forms and are often of different magnitudes 
in different regions. In order to design solid and region-
specific mitigation and adaptation strategies, it is vital to 
develop a high-resolution and reliable projection of future 
climate over China (Piao et al. 2010; Guo et al. 2018; Lin 
et al. 2018).
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Regional climate models (RCMs) are one of the two 
types of popular tools for producing high-resolution cli-
mate projections, the other one being the statistical down-
scaling methods. Both types of models are driven by the 
outputs from global climate models (GCMs), and both pro-
vide higher-resolution results than GCMs do. In contrast 
to statistical downscaling methods, RCMs are based on 
the laws of physics, including the conservation of momen-
tum, continuity equation, thermodynamic equation, and the 
hydrostatic equation, in the same way as GCMs do (Elguindi 
et al. 2013). Through the integration of high-resolution topo-
graphic information, RCMs allow the development of cli-
mate processes that are responsive to the local topology, 
which is beyond the capability of the statistical downscaling 
methods (Wang et al. 2015b). Therefore, RCMs are able 
to generate results that are of physics basis and can reflect 
regional details; thus, the RCM approach is used in this 
study.

The RCM used in this study is RegCM developed by 
the International Center for Theoretical Physics in Italy. 
Recently, there have been several applications of RegCM 
over China or Asia driven by Coupled Model Inter-compar-
ison Project Phase 5 (CMIP5) GCMs (e.g., Xue-Jie et al. 
2013; Ji and Kang 2013, 2015; Zou and Zhou 2013; Oh et al. 
2014; Hassan et al. 2015; Qin and Xie 2016; Ozturk et al. 
2017; Hui et al. 2017; Zhou et al. 2018). For example, Xue-
Jie et al. (2013) projected significant warming over China at 
the end of the twenty-first century. They also found a large 
difference in the precipitation change between the GCM and 
the RCM. Hassan et al. (2015) studied the future change in 
the summer monsoon over South Asia and found decreases 
in precipitation when the monsoon approaches the Himala-
yas. Oh et al. (2014) simulated the future climate over East 
Asia and projected a warm and humid future climate as well 
as more frequent heavy rainfall events. Some other studies 
also investigated the extreme climate. For example, Zou and 
Zhou (2013) found increases in the extreme precipitation 
events over northeastern China and the Tibetan Plateau and 
decreases over southeastern China. They also found large 
uncertainty in the Yangtze River valley in terms of precipita-
tion change. Ji and Kang (2015) studied the extreme climate 
events in the late-twenty-first century and found increases in 
extreme warm events and extreme wet events. Qin and Xie 
(2016) focused on the precipitation extremes in the mid-
twenty-first century and found increases in the extreme wet 
events in southeastern China and increases in the extreme 
dry events in northwestern China.

There are, however, various types of shortcomings associ-
ated with the previous studies. (1) For example, some stud-
ies (e.g., Xue-Jie et al. 2013; Zou and Zhou 2013; and Ji 
and Kang 2013, 2015; Oh et al. 2014; Hassan et al. 2015; 
Qin and Xie 2016; Hui et al. 2017; Zhou et al. 2018) pro-
vide future climate projections over a short time slice of the 

twenty-first century. Results of these studies are not suitable 
for long-term impact studies, and therefore not utilizable 
for the development of long-term mitigation and adaptation 
strategies. (2) Also, some studies (e.g., Zou and Zhou 2013; 
Qin and Xie 2016; Zhou et al. 2018) only provide projec-
tions based on single Representative Concentration Pathway 
(RCP), therefore fail to reflect the climate change uncer-
tainties associated with the GHG emissions. (3) In addition, 
some studies (e.g., Xue-Jie et al. 2013; Hassan et al. 2015; 
Ozturk et al. 2017) merely focus on changes in the average 
state of climate, thus cannot provide projections for extreme 
climate. Therefore, in order to provide scientific bases for the 
comprehensive impact assessment of future climate change 
in the context of China, it is necessary to develop long-term 
high-resolution climate projections under multiple emission 
scenarios, such that long-term variations and uncertainties 
in climate variables can be fully reflected.

The objective of this study is to explore the regional 
climate changes in temperature, precipitation, and their 
extremes over China throughout the twenty-first century 
in response to global warming. Such an objective entails 
the following tasks: (1) evaluation of the performance of 
RegCM in reproducing historical climate over China, and (2) 
development of future temperature and precipitation projec-
tions with RegCM.

2 � Study area, model setup, and data

The area of interest in this study is China. As shown in 
Fig. 1, the altitude varies dramatically within China, ranging 
from the sea level in coastal areas to about 8848 m at the top 
of Himalaya Mountain. The broad coverage in latitude and 
longitude, as well as the large range in the altitude, leads to 
the formation of various climate types. Based on the Köppen 
climate classification scheme, South China has a tropical cli-
mate, Northwest China has an arid climate, Northeast China 
has a continental climate, and the Tibetan Plateau has a polar 
climate. During summer, the East Asian Monsoon climate 
dominates over a large part of China, from the South to far 
inland. These regions with distinctive topological charac-
teristics and climate types will be referred to in the analysis. 
The domain as depicted in RegCM is an area of 110 by 135 
grid points with 50-km resolution centering at 34.35°N and 
102.35°E.

The version of RegCM used in this study is RegCM4, 
with the hydrostatic core (Grell et al. 1994). The Commu-
nity Land Model (CLM4.5) coupling is enabled in this study 
(Oleson et al. 2008). The microphysics scheme is used as 
the moisture scheme and the cumulus convective scheme 
used is the Emanuel scheme (Emanuel et al. 1991; Nogh-
erotto et al. 2016). It is worth noting that the selection of 
RCM and schemes can be two sources of uncertainties for 
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the simulation results. RegCM and the abovementioned 
schemes show satisfying performance in previous studies 
(Gu et al. 2012; Zou and Zhou 2013; Oh et al. 2011, 2014; 
Hua et al. 2015; Gao et al. 2016; Chung et al. 2018). For 
example, in the sensitivity analysis conducted by Chuang 
et al. (2018), it was shown that the precipitation of Southeast 
Asia is sensitive to the choice of the land surface scheme, 
and that the CLM4.5 is recommended for this region. Oh 
et al. (2011, 2014) have shown that the Emanuel scheme 
performs better than the other schemes in generating the sea-
sonal March of the East Asian Summer Monsoon over South 
Korea. In addition, the combination of the Emanuel scheme 
and CLM3.5 is shown, by Gao et al. (2016), to be able to 
better generate both the temperature and the precipitation 
distributions over China than other scheme combinations. 
The sensitivity analyses showed that this scheme combina-
tion performs well in the East and Southeast Asia and their 
sub-regions, indicating that it is capable of reproducing the 
East Asian Monsoon, which is among the key mechanisms in 
explaining the summer and winter precipitations over China, 
therefore, it is selected in this study. There are processes not 
considered in the model setup of this study, such as aero-
sol processes and air-sea coupling. Aerosols are known to 
influence climate through aerosol-radiation interaction and 
aerosol-cloud interaction. It is shown in previous studies 
that reduction in aerosol concentration can lead to additional 
warming and wetting (Wang et al. 2016; Li et al. 2016b; Wu 
et al. 2016; Zhao et al. 2019; Samset et al. 2018). On the 
other hand, the inclusion of the air-sea coupling is shown 
to affect the simulation of low-level monsoon circulation 

(Zou and Zhou 2016, 2017; Zou et al. 2016; Zhisheng et al. 
2015; Feng and Li 2011). In addition to RCM and scheme 
selection, other sources of uncertainty include GCM, sce-
nario, and perturbation in the initial and/or boundary con-
ditions. Ideally, the uncertainties can be quantified using 
the ensemble approach (such as multi-model ensemble and 
perturbed physics ensemble) that takes into account all pos-
sible factors (Wang et al. 2014; Aguilera et al. 2017; Hu 
et al. 2018). However, due to the requirements of computa-
tional resources, it is not possible to address all sources of 
uncertainty at once. The scenario uncertainty is chosen as 
the focus of this study.

The simulations are driven by two sets of boundary data: 
ERA-Interim developed by the European Centre for Medium-
Range Weather Forecasts (ECMWF) and the earth system 
model developed by Geophysical Fluid Dynamics Labora-
tory (GFDL) (Dee et al. 2011; Dunne et al. 2012, 2013). The 
driving GCM, GFDL, is selected from the CMIP5 GCMs 
since it demonstrates good performance on the large-scale 
circulations over Southeast Asia, as shown by the study con-
ducted by McSweeney et al. (2015). For the simulation of the 
present climate, both ERA-Interim and GFDL are used as the 
boundary conditions. The simulations are conducted from 
1981 to 2005, with the first few years considered as spin-up, 
leaving the baseline period from 1986 to 2005. The simu-
lation results are validated through comparisons with three 
sets of observation datasets: the high-resolution gridded data-
set from Climate Research Unit (CRU) (Harris et al. 2014), 
the Asian Precipitation—Highly-Resolved Observational 
Data Integration Towards Evaluation of Water Resources 

Fig. 1   Domain topography
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(APHRODITE, or APHRO for short) (Hamada et al. 2011; 
Yatagai et al. 2012), and ground-based station observation 
dataset from National Meteorological Information Center of 
China (NMIC for short; available from: data.cma.cn). The 
RegCM outputs are also compared with its driving datasets, 
i.e., the ERA-Interim and GFDL, for the purpose of model 
validation. For the projection of the future climate, GFDL 
provides four RCPs, two of which are selected to drive the 
simulation: RCP4.5 and RCP8.5. The simulations of the 
future climate are conducted from 2006 to 2100, and analy-
ses are performed on outputs from 2019 to 2099. In order 
to better present the gradual change of the future climate, 
the future period is separated into three time slices: early-
twenty-first century (2020–2039, or 2030s), mid-twenty-first 
century (2040–2069, or 2050s), and late-twenty-first century 
(2070–2099, or 2080s).

In order to more thoroughly evaluate the RegCM perfor-
mance as well as to provide more comprehensive projec-
tions, commonly used climate extreme indices developed by 
the Expert Team on Climate Change Detection and Indices 
(ETCCDI) are analyzed (Qin and Xie 2016; Li et al. 2018). 
The selected indices are frost days (FD), summer days (SU), 
icing days (ID), tropical nights (TR), maximum length of dry 
spells (CDD), maximum length of wet spells (CWD), maxi-
mum consecutive 5-day precipitation (Rx5 day), very heavy 
precipitation days (R20 mm), and very wet days (R95p), 
details of which are listed in Table 1. The extreme indices 
are calculated with Climpact2, which is available from clim-
dex.org. The derived extreme indices from model outputs are 
compared against the HadEX2—Global Gridded Climate 
Extremes Indices dataset for validation (Donat et al. 2013).

3 � Simulation of the present climate 
over China

The RegCM performance on the simulation of the present 
climate is evaluated through the comparison of its output 
climate variables (i.e., temperature and precipitation) with 

those from the observation (i.e., CRU, NMIC, and APHRO) 
and the driving datasets (i.e., ERA-Interim and GFDL). The 
daily 2 m air temperature and daily precipitation of the his-
torical period from each dataset are extracted, converted into 
proper units, and averaged or summed, in order to obtain 
the annual and seasonal averages or totals. In addition to 
the average state of climate, climate extreme indices (i.e., 
FD, SU, ID, TR, CDD, CWD, R × 5 day, R20 mm, and 
R95p) from ERA-Interim, GFDL, and RegCM are calcu-
lated and compared with HadEX2. The evaluation is con-
ducted from four aspects: the spatial distribution over the 
domain, seasonal variations, pairwise correlation coefficient, 
and extreme indices.

3.1 � Temperature

The spatial distributions of annual and seasonal average tem-
perature over the baseline period are shown in Fig. 2, with 
each column being one dataset (from left to right: CRU, 
ERA-Interim, RegCM driven by ERA-Interim, GFDL, and 
RegCM driven by GFDL), and each row being annual or 
seasonal average (from top to bottom: annual, winter, spring, 
summer, and autumn). (For an intuitive representation of the 
differences between the model outputs and the CRU, please 
refer to Figure S1 in the supplementary materials.) It can be 
seen from the annual average of the observation (Fig. 2a) 
that high temperature (above 10 °C) appears in southern 
China, from the south of the Yellow River to the southern 
coastal areas, as well as in the Tarim Basin. The low tem-
perature (below − 5 °C) appears in the Tibetan Plateau and 
the very north of northeastern China. The spatial distribu-
tion of the ERA-Interim data is similar to that of the CRU 
(Fig. 2b). GFDL, however, captures the spatial distribution 
of temperature with some discrepancies (Fig. 2d). The high-
temperature center in the Sichuan basin is missing, and the 
one in the Tarim basin does not follow the terrain of the 
basin as presented in CRU. Apart from the mismatches in 
the high and low-temperature centers, GFDL also has a cold 
bias over most of the domain. From Fig. 2c, e, it can be seen 

Table 1   Definition of selected climate extreme indices

Abbreviation Definition Units

FD Number of frost days: annual count of sdays when TN (daily minimum temperature) < 0 °C Day
SU Number of summer days: annual count of days when TX (daily maximum temperature) > 25 °C Day
ID Number of icing days: annual count of days when TX (daily maximum temperature) < 0 °C Day
TR Number of tropical nights: annual count of days when TN (daily minimum temperature) > 20 °C Day
CDD Maximum length of dry spell: maximum number of consecutive days with RR (daily precipitation amount) < 1 mm Day
CWD Maximum length of wet spell: maximum number of consecutive days with RR (daily precipitation amount) ≥ 1 mm Day
R × 5 day Annual maximum consecutive 5-day precipitation mm
R20 mm Annual count of days when RR (daily precipitation amount) ≥ 20 mm Day
R95p Annual total precipitation when RR (daily precipitation amount) > 95th percentile mm
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that RegCM is able to generate a spatial distribution of tem-
perature with much more regional details than the driving 
datasets. The high and low-temperature areas that are missed 
by GFDL are exclusively captured. However, a decrease in 
temperature from the boundary conditions to the RegCM 
outputs can be observed. Since such decrease in temperature 
appears more pronounced in higher altitude (e.g. the Tibetan 
Plateau). One possible explanation can be the effect of dif-
ferent elevation prescribed in the driving (coarse) and down-
scaled (fine) datasets. Studies have shown that the elevation 
difference can cause over − 2 °C temperature difference in 
mountainous regions if a constant lapse rate correction is 
applied (Phan and Ngo-Duc 2009; Ngo-Duc et al. 2017). 
Another possible cause of the temperature decrease from the 
driving to the downscaled dataset can be the parameteriza-
tion scheme combination. RegCM generates cold biases in 
most parts of the domain and they become larger at higher 
altitude. A similar pattern of cold bias can be found in the 

Multi-Regional Climate Model (RMIP) ensemble, suggest-
ing that it may be a common bias in RCMs (Fu et al. 2005; 
Tang et al. 2016).

The seasonal variations of the spatial distribution of 
temperature are shown in Fig. 2f–y. A distinctive seasonal 
cycle can be found in the observation data. The high and 
low-temperature areas identified above also appear in the 
spatial patterns of each season. The seasonal cycle of the 
ERA-Interim data is again very similar to that of the CRU. 
For GFDL, the missing high-temperature centers in annual 
average distribution remain missing for each season. Domain 
average cold biases can be found in all seasons except win-
ter, although the cold bias in the Tibetan Plateau seems to 
be persistent through all seasons. RegCM improves the spa-
tial distributions of temperature for all seasons compared to 
GFDL. The cold bias appears in all seasons, with slightly 
larger bias in winter and spring, and slightly smaller bias in 
summer and autumn.

Fig. 2   Annual and seasonal average 2 m air temperature over the baseline period for the following datasets: CRU, ERA, ERA–RegCM, GFDL, 
and GFDL–RegCM
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A measure for evaluating the similarity of two spatial 
distributions is their spatial correlation coefficient. The cor-
relation coefficients of the spatial pattern of temperature 
between the observation and the global dataset, observation 
and the downscaled dataset, and global dataset and the cor-
responding downscaled dataset are calculated and listed in 
Table 2. All correlation coefficients are significant with p 
value < 0.001. The ERA-Interim data correlates very well 
with both sets of observations. Decent performance the 
ERA-Interim data already have, the RegCM is able to fur-
ther improve the spatial distribution, resulting in a higher 

correlation between the downscaled data with the CRU 
(except for winter, of which correlation coefficient slightly 
decreased). For comparisons with the NMIC, the gridded 
datasets are interpolated to the locations of the 166 stations. 
Similar to the case of the CRU, RegCM has a higher corre-
lation than ERA-Interim when compared with NMIC, even 
for winter. The GFDL has a slightly lower correlation with 
the observation datasets compared with the ERA-Interim. 
After the dynamic downscaling by RegCM, the annual and 
seasonal spatial distributions of temperature are improved, 
which are reflected by the increased correlation coefficient. 

Table 2   Correlation coefficients for annual and seasonal 2 m temperature and precipitation

Temperature CRU & ERA CRU & ERA–
RegCM

ERA & ERA–
RegCM

CRU & GFDL CRU & GFDL–
RegCM

GFDL & 
GFDL–
RegCM

Annual 0.95 0.97 0.97 0.90 0.97 0.91
Winter 0.97 0.96 0.97 0.94 0.96 0.95
Spring 0.95 0.97 0.97 0.89 0.97 0.91
Summer 0.94 0.97 0.96 0.86 0.97 0.86
Autumn 0.96 0.97 0.97 0.91 0.97 0.92

Temperature NMIC & ERA NMIC & ERA–
RegCM

NMIC & GFDL NMIC & GFDL–
RegCM

Annual 0.95 0.97 0.90 0.98
Winter 0.95 0.97 0.88 0.97
Spring 0.93 0.95 0.91 0.95
Summer 0.93 0.94 0.92 0.97
Autumn 0.91 0.94 0.84 0.95

Precipitation CRU & ERA CRU & ERA–
RegCM

ERA & ERA–
RegCM

CRU & GFDL CRU & GFDL–
RegCM

GFDL & 
GFDL–
RegCM

Annual 0.81 0.60 0.73 0.60 0.61 0.62
Winter 0.74 0.29 0.45 0.40 0.32 0.46
Spring 0.79 0.60 0.74 0.59 0.65 0.58
Summer 0.82 0.69 0.75 0.73 0.70 0.68
Autumn 0.80 0.49 0.59 0.35 0.34 0.58

Precipitation NMIC & ERA NMIC & ERA–
RegCM

NMIC & GFDL NMIC & GFDL–
RegCM

Annual 0.78 0.65 0.57 0.47
Winter 0.71 0.29 0.51 0.29
Spring 0.76 0.68 0.33 0.65
Summer 0.59 0.68 0.56 0.51
Autumn 0.70 0.43 0.39 0.28

Precipitation APHRO & ERA APHRO & ERA–
RegCM

APHRO & GFDL APHRO & GFDL–
RegCM

Annual 0.82 0.59 0.58 0.60
Winter 0.79 0.27 0.42 0.33
Spring 0.81 0.61 0.63 0.65
Summer 0.81 0.66 0.67 0.68
Autumn 0.81 0.48 0.33 0.32



5865Projected changes in temperature, precipitation, and their extremes over China through the…

1 3

The third and the sixth column of Table 2 shows that overall 
the spatial patterns from RegCM are similar with the pat-
terns from GFDL, demonstrating the reasonableness of the 
RegCM results.

The spatial patterns of selected temperature-related cli-
mate extreme indices are shown in Fig. 3. Unlike the case 
for average temperature, the extreme indices derived from 
ERA-Interim, GFDL, and RegCM present slightly dif-
ferent patterns than HadEX2. Note that the resolution of 
HadEX2 is 3.75° × 2.5°; therefore, some differences in the 
spatial distributions can be attributed to the difference in 
resolution. For FD, ERA-Interim shows an overall underes-
timation which is more pronounced in the Tarim Basin and 
the Northeast, while the other datasets present an overall 
overestimation that is more obvious in the Tibetan Plateau. 
Such under- and overestimations are closely related to the 
over- and underestimation in the daily minimum tempera-
tures of each dataset. (Please refer to Figure S5 in the sup-
plementary materials for the spatial distributions of daily 
minimum temperature.) All datasets underestimate SU and 
overestimate ID in the Tibetan Plateau. For GFDL and two 
sets of RegCM results, the biases can be caused by the cold 
bias in daily maximum temperature (please refer to Fig-
ure S4 in supplementary materials). The baseline average 
daily maximum temperature of ERA-Interim does not show 

a large difference from the CRU, which suggests that ERA-
Interim may fail to capture the variance or the distribution 
shape of the probability distribution of the daily maximum 
temperature time series. Such bias may also exist in other 
datasets. ERA-Interim overestimates TR in most parts of 
the domain except for the Tibetan Plateau, which is again 
related to its overestimation of daily minimum temperature. 
The other datasets reasonably agree with HadEX2, which 
indicates that, although GFDL and RegCM over underesti-
mate the mean value of the probability distributions of daily 
minimum temperature, the right tail of the distribution is 
reasonably reproduced.

Through the examination of the spatial distributions, sea-
sonal variances, correlation coefficients, and extreme indi-
ces, it is shown that RegCM is able to improve both the spa-
tial distributions of annual and seasonal average temperature 
from ERA-Interim and GFDL. For GFDL, the improvement 
is substantial in Sichuan Basin and the Tarim Basin in terms 
of space, and in summer and autumn regarding seasons.

3.2 � Precipitation

The spatial distributions of the average annual and seasonal 
total precipitation are presented in Fig. 4. The first two col-
umns are the spatial patterns from CRU and APHRO. The 

Fig. 3   Baseline average of temperature-related climate extreme indices for HadEX2, ERA, ERA–RegCM, GFDL, GFDL–RegCM
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APHRO datasets used in this study has a resolution of 0.5°. 
A comparison of these two columns shows that APHRO 
provides regional details in the central, southern, and eastern 
parts of the domain. For example, APHRO shows precipita-
tion variations in the Qilian Mountains while CRU does not. 
Overall, annual total precipitation decreases from southeast 
to northwest. It can be observed in Fig. 4a, b that the main 
precipitation center with peak annual total precipitation over 
1500 mm locates in the southern coastal areas together with 
Taiwan and Hainan and a dry area with precipitation lower 
than 100 mm lies in the Tarim Basin. The spatial distribu-
tion of the ERA-Interim (Fig. 4c) shares a high resemblance 
with that of the CRU and APHRO, except for a rain band 
to the north of the Tarim Basin (which appears in CN05), a 
precipitation center to the south of the Tibetan Plateau, and 
a precipitation center near the Sichuan Basin. The GFDL 
(Fig. 4e) plot shows one precipitation peak in Central China, 
which extends to the southern edge of the Tibetan Plateau. 
This unrealistic precipitation center also appeared in other 
GCMs as reported by previous studies (Liu et al. 2013; Buc-
chignani et al. 2014; Bao et al. 2015). The reason, as identi-
fied by those studies, is that the topology of the Himalaya 
Mountains represented in the GCMs is smoothed compared 
with the actual value, causing the precipitation to extend 

further into the mountainous areas (Gao et al. 2008). In the 
southeastern corner of the Tibetan Plateau, the precipita-
tion is able to penetrate the mountainous areas and enter 
the inland areas. GFDL plot also does not show the high 
precipitation in the southern coastal areas. The dry area near 
the Tarim Basin from GFDL has a northward-shifted posi-
tion and fails to follow the terrain of the basin.

Compared with its driving datasets, RegCM is able to 
provide more regional details to the spatial distribution of 
precipitation (Fig. 4d, f). Precipitation is high in some of the 
small-to-medium-scale mountains, such as the Tian Moun-
tains mentioned above, the Greater Khingan Mountains, the 
Lüliang Mountains, the Taihang Mountains, and the Qin 
Mountains. Although it may be true that the precipitation 
in these mountains is heavy, the magnitude (peak value 
over 1000 mm) is overestimated. Note that the high pre-
cipitation along the Tian Mountains can be found in another 
observation dataset named CN05, with a peak value over 
1.5 mm/day, which suggests that this precipitation center 
generated by RegCM is reasonable (Xie et al. 2007). The 
overestimation of precipitation may be attributed to the 
cumulus convective scheme (Emanuel scheme) used in the 
simulation, which is shown in previous studies to have a 
tendency of overestimating precipitation in the Asia domain 

Fig. 4   Annual and seasonal total precipitation over the baseline period for the following datasets: CRU, APHRO, ERA, ERA–RegCM, GFDL, 
and GFDL-RegCM
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(Ali et al. 2015; Zhang et al. 2015). Compared with ERA-
Interim, RegCM produces less precipitation in the Southeast 
and more precipitation in the Northwest. Compared with 
GFDL, the unrealistic precipitation center in Central China 
is partially removed and compressed to a very narrow band 
along the southeastern corner of the Tibetan Plateau instead. 
The main precipitation center in the southern coastal areas 
is reasonably reproduced except for some areas along the 
coastal lines and a dry bias in the Sichuan Basin. RegCM 
also improves the position and shape of the dry areas in the 
Tarim Basin.

The seasonal variations of the spatial distribution of pre-
cipitation are shown in Fig. 4g to (ad). High precipitation 
in summer and low precipitation in winter can be observed 
from the CRU plots, which is caused by the East Asian Mon-
soon. This seasonal cycle of precipitation can also be found 
for each dataset. ERA-Interim has and an apparent over-
estimation of precipitation in summer. GFDL and RegCM 
do not seem to perform well in winter and autumn: there 
are apparent dry biases in the southern parts of the domain. 
The winter precipitation is closely related to large-scale 
processes such as the East Asian Monsoon. The dry bias 
is likely to be caused by an overestimation of the Siberian 
high in winter, which can push the precipitation center that 
is supposed to be in the South to some other location outside 
of the domain (Zou and Zhou 2017). (For the spatial pat-
terns of mean sea-level pressure, please refer to Figure S6 in 
supplementary materials.) Compared with GFDL, RegCM 
shows noticeable improvement of the precipitation pattern 
in spring.

An inspection of the two sets of RegCM results shows 
three common biases: a dry bias in the Sichuan Basin, a 
dry bias in the southern coastal areas (except for summer), 
and a combined wet bias in the Northwest with dry bias in 
Southeast (N–S wet-dry bias for short). The dry bias in the 
Sichuan Basin do not appear in the global datasets; there-
fore, it is very likely to be attributed to the parameterization 
schemes. The fact that GFDL has a dry bias in the southern 
coastal area in each season, and that the biases are more 
pronounced in the RegCM result driven by GFDL than that 
driven by ERA-Interim, indicates that this dry bias is par-
tially caused by the schemes and partially inherited from the 
boundary condition. The combined N–S wet-dry bias does 
not present in the ERA-Interim plots but appears in GFDL 
results. Such bias may not be unique for RegCM and GFDL 
since it also appears in the RMIP ensemble constructed by 
Li et al. (2016a). Therefore, the N–S wet-dry bias is likely to 
be related to the model setup of GCMs and RCMs.

In order to obtain a better understanding of the biases 
in precipitation, the annual and seasonal vapor pressure 
is plotted and shown in Fig. 5. (For an intuitive repre-
sentation of differences of the model outputs with the 
CRU, please refer to Figs. S2 and S3 in supplementary 

materials.) There is an apparent underestimation of vapor 
pressure in the Sichuan Basin for all seasons in the two 
sets of RegCM results, which is likely to be the cause of 
the dry bias in this area. In addition, all datasets show 
underestimations of vapor pressure in the Northwest (low-
temperature regions) and overestimations in Southeast 
(high-temperature regions) compared to CRU. Correlation 
analysis shows that there is a negative correlation between 
the vapor pressure bias and temperature. The correlation 
is weak (− 0.28) for ERA-Interim, moderate (− 0.44) for 
GFDL, and strong for RegCM (− 0.77 and − 0.86, respec-
tively). Furthermore, all datasets demonstrate a weak to 
moderate positive correlation between the precipitation 
bias and the vapor pressure bias (0.35, 0.34, 0.42, and 
0.44 for ERA-Interim, RegCM driven by ERA-Interim, 
GFDL, and RegCM driven by GFDL, respectively). There-
fore, the N–S wet-dry bias (statistically characterized by 
temperature-precipitation correlations of − 0.51 for GFDL, 
− 0.31 and − 0.42 for RegCM) is likely to be the result 
of the superposed effect of the temperature-related vapor 
pressure bias and the vapor-pressure-bias-related precipi-
tation bias. Specifically, all datasets tend to overestimate 
precipitation where vapor pressure is overestimated, and 
GFDL and RegCM tend to overestimate vapor pressure 
in the Northwest and underestimate vapor pressure in the 
Southeast, thus result in the N-S wet-dry bias that appears 
in these datasets. (Note that all correlation coefficients are 
statistically significant with p values smaller than 0.001.)

The pairwise correlation coefficients for precipitation are 
given in Table 2. The ERA-Interim precipitation has strong 
correlations with that of CRU, NMIC, and APHRO. The 
correlation coefficients are reduced after RegCM downscal-
ing and the RegCM shares a higher resemblance with ERA-
Interim than with any observation datasets. The GFDL has a 
moderate correlation with the observations. When compared 
with CRU and APHRO, the correlation is slightly increased 
after downscaling. For NMIC, the correlation decreases. 
Such a decrease can be related to the spatial distribution 
of the stations. The stations are more densely located in 
the southern and eastern part of the domain (see Fig. S7 
in supplementary materials), where RegCM presents larger 
biases (dry bias in the South and wet bias in the Northeast) 
compared with the rest of the domain. The denser number of 
stations in these locations acts like additional weights in the 
calculation of correlation coefficient. In terms of seasons, 
RegCM has a better performance in spring and summer and 
a less satisfactory performance in winter and autumn, which 
is consistent with the patterns shown in Fig. 4.

The baseline averages of precipitation-related extreme 
indices are shown in Fig. 6. The first four indices are value-
based, and the last one is percentile-based. The baseline 
for percentile calculation is 1961–1990 for HadEX2 but 
1986–2005 for the rest of the datasets since the RegCM 
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simulation periods start from 1981 in this study. The differ-
ence in baseline may cause some differences in the results of 
R95p. Compared with HadEX2, all the datasets show under-
estimations in CDD and overestimations in CWD, which 
indicates that all datasets are likely to overestimate the num-
ber of wet days. For GFDL and RegCM, there is also slight 
overestimation of CDD in the South, which is consistent 
with the identified dry bias. For R × 5 day and R20 mm, all 
the datasets show some underestimations, which, combined 
with the under- and overestimations of CDD and CWD, sug-
gests that all models tend to generate more wet days with 
less intense precipitation. For GFDL, the spot in Central 
China with large overestimations in R × 5 day and R20 mm 

is caused by its unrealistic precipitation center. This overes-
timation is again removed in RegCM. All datasets show less 
R95p than HadEX2. Such underestimation can be caused 
by the different baseline period for percentile calculation 
since the 95-percentile of precipitation can be higher for 
1986–2005 than for 1961–1990.

Regarding the precipitation, RegCM, compared with 
GFDL, is able to remove the unrealistic precipitation center 
in Central China and adjust the position and shape of the dry 
area in the Tarim Basin in terms of space, and improve the 
overall spatial distribution in spring in terms of seasons. The 
precipitation biases in RegCM are likely to be related to its 
biases in vapor pressure.

Fig. 5   Annual and seasonal average vapor pressure over the baseline period for the following datasets: CRU, ERA, ERA–RegCM, GFDL, and 
GFDL–RegCM
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4 � Projection of the future climate over China

In this section, changes in future temperature and precipita-
tion projected by RegCM are analyzed. The reason that the 
focus is on change rather than the future value is not only 
that it is intuitive to understand, but also that the computa-
tion of change itself counts as a bias correction process, as 
suggested by other research (Bucchignani et al. 2014). The 
analyses are conducted on the three abovementioned future 
periods (2030 s, 2050 s, and 2080 s), and from four aspects, 
spatial distribution, seasonal variations, time series analysis, 
and extreme indices.

4.1 � Daily mean, minimum, and maximum 
temperature

The projected changes in annual and seasonal average 
daily maximum, mean, and minimum temperature under 
two scenarios are shown in Figs. 7, 8, and 9. (For the sig-
nificance of changes, please refer to Figs. S8–S13 in sup-
plementary materials.) The figures share the same layout: 
the first and last three columns are the three future periods 
under RCP4.5 and RCP8.5, respectively and the rows are 
annual, winter, spring, summer, and autumn averages. A 
comparison between the increases in annual average daily 
maximum, mean, and minimum temperature reveals that 
larger increases can be found in daily minimum temperature 
compared with the increases in daily mean temperature, and 
smaller increases in daily maximum temperatures than daily 

Fig. 6   Baseline average of precipitation-related climate extreme indices for HadEX2, ERA, ERA–RegCM, GFDL, GFDL–RegCM
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mean temperatures. By comparing the temperature increases 
under each scenario, it can be found that slight increases 
occur between 2050 and 2080 s under RCP4.5, whereas 
under RCP8.5, large increases can be found between these 
periods. These behaviors are consistent with the character-
istics of the two scenarios: a stabilized GHG concentrations 
in RCP4.5 and increasing ones in RCP8.5. Some areas suffer 
more substantial temperature increases than other areas. For 
example, the Tibetan Plateau is likely to experience an over 
− 2 °C increase in daily mean and maximum temperature 
and an over − 2.5 °C increase in daily minimum temperature 
by the end of the twenty-first century under RCP4.5, while 
under RCP8.5, daily maximum, mean, and minimum tem-
peratures are likely to increase over 4, 4.5, and 5 °C, respec-
tively. As commonly acknowledged, there are uncertainties 
in the climate model projections. Therefore, the RegCM 
projections are compared with the GFDL projections for 
a perception of the uncertainties. (The projected changes 
in daily maximum, mean, and minimum temperature of 
GFDL, together with patterns marked with the significance 

of changes, are shown in Fig. S29–S37 in the supplemen-
tary materials.) It can be seen that the patterns of GFDL 
and RegCM projections are similar, except that the increases 
modeled by RegCM are larger than that by GFDL. The dif-
ferences between the two datasets are within 1 °C for the 
majority of the domain, except in the Tibetan Plateau, where 
differences as large as 1.5 °C are found. In addition, GFDL 
also projects larger increases in daily maximum temperature 
than that in daily mean temperature, both of which are larger 
than increases in daily minimum temperature.

There are seasonal variations associated with the tem-
perature increases. For daily mean and minimum temper-
ature, large increases can be found in winter and autumn 
under both scenarios. The same two seasons are projected 
to experience large increases under RCP4.5 for daily maxi-
mum temperature, yet under RCP8.5, larger increases are 
likely to occur in summer and autumn. Spatial variations 
also present along with the seasonal variations. In winter, 
the Tibetan Plateau and Northeast are likely to experience 
substantial temperature increases; the increases can reach 

Fig. 7   Projected change in annual and seasonal average daily mean temperature in 2030 s, 2050 s, and 2080 s, under RCP4.5 and RCP8.5
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beyond 4, 4.5, and 6 °C for daily maximum, mean, and mini-
mum temperature, respectively, by the end of the twenty-first 
century under RCP8.5. The Tibetan Plateau also stands out 
in spring when respectively over − 3, 4, and 4.5 °C increases 
in daily maximum, mean, and minimum temperature can 
occur in 2080 s under RCP8.5. It is the Northwest that is 
projected to suffer large temperature increase in summer, 
with an over − 4.5 °C increase in the daily maximum, mean, 
and minimum temperature in 2080 s under RCP8.5. The 
Tibetan Plateau and the Yangtze River basin are identified 
as areas likely to experience large temperature increases in 
autumn; above − 4.5 °C increase for daily maximum and 
mean temperature and above − 5.5 °C for daily mean tem-
perature for the former, and above − 4.5 °C increase for daily 
maximum, mean, and minimum temperature for the latter, 
in 2080 s under RCP8.5. The changes in daily maximum, 
mean, and minimum temperature are significant at α-level 
of 0.01 for nearly the entire domain in the 2050 s and 2080 s 
under both scenarios.

A correlation analysis is conducted in order to better 
understand the temporal and spatial variability of the tem-
perature increase. The change in vapor pressure is found 
to have a medium to strong negative correlation with the 
change in temperature (e.g., − 0.76 in 2080 s under RCP8.5). 
A possible explanation is offered by a study conducted by 
Räisänen et al. (2004), in which the change in energy bal-
ance is examined. Räisänen et al. (2004) suggested that the 
surface energy balance is the distribution of the surface 
net radiation among the sensible heat, latent heat, and heat 
storage. The third factor, being small compared to the oth-
ers, is usually ignored. Räisänen et al. (2004) argued that 
the surface air temperature is more directly affected by the 
sensible heat since the latent heat is stored in the moisture. 
Therefore, it can be argued that, in some cases, a large part 
of the increased surface net radiation is stored due to a large 
increase in moisture content, resulting in a less pronounced 
temperature increase. The change in annual and seasonal 
average vapor pressure is plotted (please refer to supplemen-
tary materials). It can be observed that places having large 

Fig. 8   Projected change in annual and seasonal average daily maximum temperature in 2030 s, 2050 s, and 2080 s, under RCP4.5 and RCP8.5
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temperature increase, such as the Northeast and the Tibetan 
Plateau, have a small increase in vapor pressure. Regard-
ing the seasonal variations, the vapor pressure increase in 
winter and autumn is smaller compared with that in spring 
and summer, which can be one of the causes of the larger 
temperature in winter and autumn.

The domain average temperature increases are summa-
rized in Table 3. In order to decide whether the changes (of 
variance and mean value) in annual temperature are statisti-
cally significant and whether trends exist, F test, t test, and 
Mann–Kendall (MK) test are performed on the annual aver-
age temperature time series (Fig. 10), p values of which are 
summarized in Table 4. Given an α-level of either 0.05 or 
0.01, the difference in the variance of daily mean tempera-
ture between 2080 s and the baseline period under RCP8.5 
is significant. Also significant are the mean value differences 
of daily mean temperature between all future periods and 
the baseline period under both scenarios. MK tests are per-
formed for historical and future periods as well as the com-
bination of the three future periods (2020–2099). Increasing 

trends can be concluded for historical period and all future 
periods and the entire 80-year future period under both sce-
narios, except for 2080 s under RCP4.5. This is consistent 
with the previous observations from Fig. 7 as well as the 
time series shown in Fig. 10 (the regressed line for 2080 s 
under RCP4.5 is almost parallel to the x-axis).

The projected temperature-related extreme indices for 
the three future periods under two RCPs are shown in 
Fig. 11. (For the significance of changes, please refer to 
Figures S25–S26 in supplementary materials.) The FD 
and ID are projected to decrease in all future periods under 
both scenarios for most of the domain, except for a part of 
the southern coastal areas where no statistically significant 
change in ID can be found given an α-level of 0.05. The area 
that is expected to have larger decreases in FD and ID than 
the rest of the domain is the southern part of the Tibetan 
Plateau. Under RCP8.5, people living in this area are likely 
to experience over-2-month decreases in FD and ID in the 
2080 s. Increases are projected for SU and TR. In contrast to 
the projected large increase in average daily maximum and 

Fig. 9   Projected change in annual and seasonal average daily minimum temperature in 2030 s, 2050 s, and 2080 s, under RCP4.5 and RCP8.5
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Table 3   Projected changes 
in annual and seasonal 
temperatures and precipitation

2030 s 2050 s 2080 s

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

Daily mean temperature (°C)
 Annual 1.09 1.23 1.80 2.39 1.97 3.99
 Winter 1.06 1.45 2.03 2.63 2.37 4.13
 Spring 0.91 1.02 1.42 1.85 1.74 3.37
 Summer 1.05 1.24 1.61 2.32 1.68 3.94
 Autumn 1.33 1.22 2.16 2.77 2.08 4.52

Daily maximum temperature (°C)
 Annual 1.05 1.17 1.75 2.29 1.86 3.84
 Winter 0.94 1.33 1.86 2.35 2.12 3.67
 Spring 0.89 0.96 1.37 1.78 1.68 3.28
 Summer 1.09 1.29 1.65 2.36 1.69 4.02
 Autumn 1.27 1.12 2.13 2.68 1.94 4.38

Daily minimum temperature (°C)
 Annual 1.16 1.33 1.90 2.54 2.12 4.23
 Winter 1.18 1.56 2.18 2.88 2.61 4.56
 Spring 0.99 1.15 1.56 2.02 1.89 3.65
 Summer 1.03 1.23 1.61 2.32 1.72 3.94
 Autumn 1.44 1.36 2.27 2.93 2.28 4.79

Precipitation (mm)
 Annual 21.33 26.46 28.83 44.39 57.59 71.45
 Winter 1.99 −0.28 1.70 6.30 5.27 3.06
 Spring 10.23 15.03 13.86 16.28 18.38 24.37
 Summer 0.13 1.01 9.82 13.99 18.48 29.53
 Autumn 8.98 10.07 3.45 7.28 15.45 14.49

Fig. 10   Annual average temperature time series. (Note that the solid line indicates the fitted trend obtained by linear regression)
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minimum temperature in the Tibetan Plateau, the SU and 
TR remain unchanged at α-level of 0.05 in this area. The 
Yunan-Guizhou Plateau is projected to have an increase as 
long as nearly 3-month in SU in the 2080 s under RCP8.5. 
For TR, the most affected areas are the Tarim Basin and the 
South where around 80-day increases are projected.

To provide a better sense of projection uncertainties, 
results of this study are compared with that from previ-
ous studies. In the ensemble projection conducted by Tang 
et al. (2016), the RMIP ensemble, under the SRES A1B 
scenario, also presented larger increases in the North and 
smaller increases in the South. The Tibetan Plateau was also 
identified as the location suffering from the largest tempera-
ture increase in the domain. The projected winter tempera-
ture increases in the study by Zou and Zhou (2017) showed 
more pronounced increases in the Northeast and parts of the 
Tibetan Plateau under RCP8.5, which is similar to results of 
this study. In comparison, the projected changes in winter 
temperature by Lee et al. (2014) showed more substantial 
increases in the South and the Northeast under RCP8.5. For 
the extreme indices, Sillmann et al. (2013) projected a large 
decrease in FD in the Tibetan Plateau under RCP8.5, as well 

as no significant change in TR in the same area under both 
RCPs.

In summary, the temperature increase in daily minimum 
temperature is larger than that in daily mean temperature, 
which is larger than that in daily maximum temperature. The 
Tibetan Plateau is projected to suffer the most substantial 
temperature increase compared to the rest of the domain, 
and more pronounced temperature increases can be found in 
winter and autumn than in other seasons. The temperature 
increases are significant for all future periods regardless of 
the scenario, and increasing trends exist in all periods except 
in 2080 s under RCP4.5 in which the temperature appears 
to become stable. Under both scenarios, the extreme cold 
events (FD and ID) are likely to decrease and extreme warm 
events (SU and TR) are expected to increase.

4.2 � Precipitation

The projected changes in annual and seasonal total precipi-
tation under both scenarios are shown in Fig. 12. (For the 
significance of changes, please refer to Fig. S14 and S15 
in supplementary materials.) In contrast to the increasing 
behavior of temperature, precipitation shows increases as 
well as decreases in different areas, which is likely to be 
caused by the influences of local topography and land cover/
use. Areas that are likely to experience precipitation increase 
are the Tibetan Plateau, Yellow River Basin, and south of 
the Yangtze River Basin. Precipitation increases of over-
50 mm/year and over − 75 mm/year are projected to occur 
in Tibetan Plateau in 2080 s under RCP4.5 and RCP8.5., 
respectively. Yellow River Basin is likely to have an over 
− 150  mm/year and over − 200  mm/year precipitation 
increase in 2080 s under RCP4.5 and RCP8.5, respectively. 
Precipitation increases of over − 200 mm/year for RCP4.5 
and over − 150 mm/year for RCP8.5 are likely to be found in 
the south of the Yangtze River Basin in 2080 s. In addition 
to the above areas, Northeast is projected to experience pre-
cipitation increase of more than 50 mm/year in 2080 s under 
RCP8.5. Areas likely to experience decreases in precipita-
tion are Southwest and Central China. An over − 75 mm/
year precipitation decrease is likely to occur in Southwest 
in 2030 s under RCP4.5 and 2050 s under RCP8.5. For parts 
of Central China, precipitation is projected to decrease by 
more than 100 mm/year in 2080 s under RCP8.5. The GFDL 
projection shows a slightly different pattern compared to 
RegCM due to large uncertainties in precipitation projec-
tions. (Please refer to Figs. S38–S40 in supplementary 
materials for projected precipitation changes as well as 
the significance of changes of GFDL.) Similar to RegCM, 
GFDL also projects significant precipitation increases in the 
Tibetan Plateau and the Yellow River Basin in the 2080 s 
under both scenarios. The projected precipitation increase 
in the Tibetan Plateau by GFDL is slightly larger than that 

Table 4   p-values for F-, t-, and MK tests for temperature and precipi-
tation

(Note that p value < 0.05 indicates moderate statistical significance; p 
value < 0.01 indicates strong statistical significance; p value < 0.001 
indicates very strong statistical significance.)

Baseline 2030 s 2050 s 2080 s 2020–2099

Daily mean temperature
 F test
  RCP4.5 – 0.942 0.984 0.003 –
  RCP8.5 – 0.997 0.844 0.242 –

 t-test
  RCP4.5 – < 0.001 < 0.001 < 0.001 –
  RCP8.5 – < 0.001 < 0.001 < 0.001 –

 MK test
  RF < 0.001 – – – –
  RCP4.5 – < 0.001 0.004 0.830 < 0.001
  RCP8.5 – < 0.001 < 0.001 < 0.001 < 0.001

Precipitation
 F test
  RCP4.5 – 0.784 0.805 0.228 –
  RCP8.5 – 0.237 0.242 0.471 –
  t test
  RCP4.5 – 0.126 0.035 < 0.001 –
  RCP8.5 – 0.116 0.005 < 0.001 –

 MK test
  RF 0.673 – – –
  RCP4.5 – 0.820 0.116 0.886 0.048
  RCP8.5 – 0.626 0.011 0.775 0.001
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Fig. 11   Projected change in temperature-related climate extreme indices in 2030 s, 2050 s, and 2080 s, under RCP4.5 and RCP8.5

Fig. 12   Projected change in annual and seasonal total precipitation in 2030 s, 2050 s, and 2080 s, under RCP4.5 and RCP8.5
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by RegCM; such large increases in the Tibetan Plateau was 
also projected in the CMIP5 ensemble (Huang et al. 2014). 
In contrast to the projected precipitation increase in the 
Northeast in the 2080 s under RCP8.5 in RegCM, GFDL 
projects an over − 25 mm/year decrease in the eastern parts 
of the Northeast.

There are seasonal variations associated with the pre-
cipitation change. In winter, most of the domain is like to 
experience an insignificant precipitation variation of − 15 
to 15 mm/season, while a precipitation decrease of over 
− 45 mm/season can be found in Southwest in 2030 s and 
2080 s under RCP8.5, resulting an overall slight precipi-
tation increase in winter (except for 2030 s under RCP8.5 
where a domain-average decrease of 0.28 mm/season is pro-
jected to occur) (Table 3). Spring is projected to experience 
the most substantial precipitation increase compared to the 
other seasons. There are precipitation increases of below 
30 mm/season for a considerable portion of the domain, 
and over − 105 mm/season increase in the Yangtze River 
Basin under both scenarios. For summer, large precipita-
tion increases, as well as decreases, are projected to occur 
in different areas. Southwest is likely to experience large 
precipitation increase, which reaches beyond 105 mm/sea-
son in 2080 s under RCP8.5. On the other hand, parts of the 
South are projected to have precipitation decrease of 45 to 
over − 60 mm/season in 2030 s and 2050 s under RCP4.5 
and all future periods under RCP8.5. Moderate precipitation 
increases and decreases are projected to occur in autumn: 

30–75 mm/season precipitation increase in the Yellow River 
Basin under both scenarios and over − 45 mm/ season pre-
cipitation decrease in parts of the Southwest in 2030 s and 
2050 s under RCP4.5.

The precipitation change is compared with the change 
in mean sea-level pressure, vapor pressure, and cloud cover 
(please refer to Figs. S16–S24 in the supplementary materi-
als for the projected changes as well as the significance of 
changes of these variables.). An increase in mean sea-level 
pressure can be found in winter under both scenarios. It can 
lead to an increase in the northwesterly wind and cause dry 
winter. In the meantime, a slight increase in vapor pressure 
is projected to occur in winter, which can lead to precipita-
tion increase. The combined effect of these two opposing 
factors results in an overall slight increase in winter precipi-
tation. In spring, the mean sea-level pressure decrease com-
bined with vapor pressure increase creates a condition that 
favors precipitation, which is likely to be the cause of the 
large increase in spring precipitation. Correlation analysis 
shows a weak positive correlation (approximately 0.35–0.40) 
between the change in precipitation and that in cloud cover.

Precipitation time series is shown in Fig. 13. There is no 
statistically significant difference in the variance of domain-
average annual total precipitation between any future periods 
and the baseline period (Table 4). Given an α-level of 0.01, 
the mean value differences are significant in 2050 s under 
RCP8.5 and in 2080 s under both RCPs; and with α-level of 
0.05, the precipitation differences in 2050 s under RCP4.5 

Fig. 13   Annual total precipitation time series. (Note that the solid line indicates the fitted trend obtained by linear regression)
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can also be considered significant. Statistically significant 
increasing trends can be found in precipitation in 2050 s (at 
an α-level of 0.05) and the entire 80-year future period (at 
an α-level of 0.01) under RCP8.5.

For precipitation extreme indices, projected changes 
are shown in Fig. 14. (Please refer to Figs. S27 and S28 
for the significance of changes.) Although the change in 
the amount of total precipitation can be substantial, the 
changes in extreme indices are not statistically significant 
with an α-level of 0.05 over more than half of the domain. 
CDD is likely to decrease in the Tarim Basin and Cen-
tral north, although the amount of precipitation increase 
is not large in these areas. For the Tarim Basin, over − 35 
and over − 40 day of CDD decreases are projected in the 
2080 s under RCP4.5 and RCP8.5, respectively. CWD is 
projected to increase in parts of the Tibetan Plateau while 
decrease in southern coastal areas. The increases and 
decreases are both approximately 10 days in the 2080 s 
under RCP8.5. The same parts of the Tibetan Plateau 
are also likely to experience increases in R × 5 day. For 
R20 mm, increases can be found in the Yellow River Basin 
under both scenarios. Areas that are likely to experience 

large increases in R95p are the Tibetan Plateau, the Yellow 
River Basin, and the Yangtze River Basin.

Comparisons of precipitation projections of this study 
with that of previous studies are also conducted to obtain 
a perception of uncertainties. The RMIP ensemble con-
structed by Li et  al. (2016a) projected precipitation 
decreases in the Central North where increases are found 
in this study. The summer precipitation pattern projected 
by Zou and Zhou (2016) also showed large increases in the 
Tibetan Plateau under RCP8.5, while in Lee et al. (2014)’s 
study, larger increases in summer precipitation were found 
in the South. In comparison, Ji and Kang (2015) found no 
significant change in summer precipitation in the Tibetan 
Plateau or the South, but over 50% precipitation decreases 
in the Northwest. For winter precipitation, decreases in 
Yunnan–Guizhou Plateau under RCP8.5 were projected by 
Oh et al. (2014), which is similar to results of this study, 
whereas Lee et al. (2014) found no change in this area. 
For extreme precipitation, Sillmann et al. (2013) found 
no significant change in CDD over most of the domain 
under RCP4.5 and significant increases in the South 
under RCP4.5, while in this study, CDD does not present 

Fig. 14   Projected change in precipitation-related climate extreme indices in 2030 s, 2050 s, and 2080 s, under RCP4.5 and RCP8.5
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significant change under both RCPs except for the Tarim 
Basin and the Central North.

In summary, the Tibetan Plateau, Yellow River basin, 
and Yangtze River Basin are projected to have substantial 
precipitation increase under both scenarios and Northeast 
under RCP8.5, while Southeast and Central China are likely 
to experience decreases in precipitation. Largest domain-
average precipitation increase can be found in spring com-
pared to the other seasons. Precipitation increase in 2050 s 
and 2080 s under both scenarios are statistically signifi-
cant, and an increasing trend exists throughout this century 
under RCP8.5. For precipitation extremes, extreme dry 
events (CDD) are likely to decrease in the Tarim Basin and 
the Central North, and the extreme wet events (R × 5 day, 
R20 mm, and R95p) are projected to increase in the Tibetan 
Plateau, Yellow River Basin, and Yangtze River Basin. The 
CWD, however, is projected to increase over parts of the 
Tibetan Plateau and decrease in the South.

5 � Conclusions

In this study, the present climate of China is studied and its 
future climate is projected through RegCM. For the pre-
sent climate, ERA-Interim as well as GFDL are used to 
drive RegCM simulations. Model performance is evaluated 
by comparing the simulated 2 m air temperature and pre-
cipitation with three observation datasets: CRU, APHRO, 
and NMIC. RegCM captures the high-temperature cent-
ers in Sichuan Basin and the Tarim Basin which are either 
missed or generated with large discrepancies in GFDL. 
It also improves the spatial pattern of precipitation from 
GFDL by removing the unrealistic precipitation center in 
Central China. The RegCM results are not perfect: there is 
an overall cold bias, dry biases in the Sichuan basin and the 
southern coastal areas, and an overall N–S wet-dry bias. The 
biases in the temperature and precipitation lead to discrepan-
cies between the modeled climate extreme indices and the 
HadEX2 observation. A correlation analysis is performed 
over temperature, precipitation, and vapor pressure to better 
understand the precipitation bias. It shows that the N–S wet-
dry bias is the result of the superposed effects of two system-
atic biases: overestimation of precipitation where overesti-
mation of vapor pressure occurs and over(under)estimation 
of vapor pressure where temperature is low (high), the for-
mer being a common bias for all datasets and the latter only 
appearing in GFDL and RegCM. Overall, RegCM is able to 
generate more regional details compared with both boundary 
datasets and improves the spatial patterns of GFDL.

The future climate over China is projected through 
RegCM simulations driven by GFDL. Domain-average tem-
perature increases of approximately 2 and 4 °C are projected 
to occur by the end of the twenty-first century under RCP4.5 

and RCP8.5, respectively. The daily minimum temperature 
is likely to have larger increases than daily mean tempera-
ture, which, in turn, is likely to have larger increases than 
daily maximum temperature. The Tibetan Plateau stands 
out as an area suffering the most substantial temperature 
increase, which is projected to reach beyond 2 and 4.5 °C 
under RCP4.5 and RCP8.5 respectively. Domain-average 
temperature becomes stable in 2080 s under RCP4.5 and has 
an increasing trend under RCP8.5, which will foreseeably 
increase beyond the twenty-first century under this scenario. 
Extreme cold events are likely to decrease with the Tibetan 
Plateau being the most affected area, while extreme warm 
events are projected to increase with the Yunnan-Guizhou 
Plateau, the Tarim Basin, and the South mostly influence. 
RegCM projects precipitation increases of 58 and 71 mm/
year by the end of the twenty-first century under RCP4.5 
and RCP8.5, respectively. There are increases as well as 
decreases in precipitation in different parts of the domain 
due to the influences of local topography and land cover/
use. At the end of the twenty-first century, the Yellow River 
basin and Yangtze River Basin are likely to experience 
large precipitation increases of 150 to over − 200 mm/year 
and the Tibetan Plateau have an increase of over − 50 mm/
year under both scenarios, and the Northeast is projected 
to have an over − 50 mm/year precipitation increase under 
RCP8.5. Precipitation decreases are projected to occur in the 
Southwest and Central China, a decrease of over − 75 in the 
early- and mid-twenty-first century under both scenarios for 
the former, and a decrease of over − 50 mm/year in 2050 s 
under both scenarios and in 2080 s under RCP8.5 for the 
latter. There is a statistically significant increasing trend in 
the precipitation throughout this century under RCP8.5. The 
extreme dry events are projected to decrease in the Tarim 
Basin and the Central North, and the extreme wet events are 
likely to increase in the Tibetan Plateau, the Yellow River 
Basin, and the Yangtze River Basin.

Results from this study can be used as inputs for climate 
change impact assessment and adaptation studies. More in-
depth extensions of this study can also be conducted target-
ing the limitations of this study. For example, the resolution 
can be increased from 50 km to 10–20 km, aligning with the 
CORDEX2 plans, so that the behavior of precipitation and 
local wind systems can be better captured (Gutowski et al. 
2016). In addition, sensitivity analysis of the effect of param-
eterization scheme combination can be conducted to further 
study the causes of biases in the simulation results. Further-
more, the aerosol processes can be enabled in the model 
so that the interactions between aerosol processes and the 
East Asian Monsoon can be reflected. Also, the coupling of 
RegCM with an ocean model can be conducted to resolve the 
air-sea coupling processes. Moreover, ensemble projection 
can be constructed by driving RegCM with multiple GCMs 
so that projection uncertainty can be further addressed.
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