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• Evaluating whether a fine-resolution
model has more added value for under-
standing regional climatology.

• PRECIS model is used to conduct long-
term climate simulations for China at
two different spatial resolutions.

• Regional climate models with higher
resolution cannot always produce
more accurate output.
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Previous studies have suggested that dynamical downscaling to global climatemodels can produce improved cli-
mate simulations at regional and local scales. However, the expensive computational requirements of dynamical
downscaling inevitably add a limit to the spatial resolution of the resulting regional climate simulations. In order
to find a balance between computational requirements and simulation improvements, it is extremely important
to investigate how the spatial resolution of regional climate simulation affects the added values of dynamical
downscaling; yet, it is still not well understood. Therefore, in this study, we conduct long-term climate simula-
tions for the entire country of China with the PRECIS regional climate model at two different spatial resolutions
(i.e., 25 and50km). The purpose is to evaluatewhether afine-resolutionmodel simulation, given its considerable
requirements for computational resources, would addmore valuable information for understanding regional cli-
matology than a coarse-resolutionmodel simulation. Our results show that the PRECIS can reasonably reproduce
the spatial distribution of seasonal andmonthly mean temperature and precipitation over themost of regions in
China. However, in the process of downscaling, RCM with higher resolution cannot always produce more accu-
rate output. In regard to precipitation simulations, compared with the host GCM, it is difficult to determine ex-
actly a homogeneous improvement of performance in downscaling, both in terms of spatial patterns as well as
magnitude of errors. For interannual variability, variations in temperature are closer to observation than
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precipitation and the high-resolution R25 has better skills over the northwest than R50.Moreover, except for the
west, it is shown that PRECIS is able to better reproduce the probability distribution function of precipitation and
some impact-relevant indices such as the number of consecutive wet days and simple precipitation intensity
index in spatial distribution.

© 2020 Published by Elsevier B.V.
1. Introduction

China is one of the regions highly vulnerable to climate change, with
complicated climatic conditions, fragile ecological environment and fre-
quent natural disasters. In recent years, China has experiencedmany di-
sasters due to climate change. According to the Global Climate Risk
Index 2019, there are more than 11,500 extreme weather events
(i.e., storms, floods, heat waves, etc.) around the world, resulting in
5,260,000 deaths approximately and US$ 3.47 trillion economic losses
from 1998 to 2017, wherein China ranked second for the losses in the
world list. In 2017, losses caused by natural disasters are 301.87 billion
yuan and affect 140 million people in China (David Eckstein, 2019; Jia
and Yun, 2018). Scientific understanding for the process of the past cli-
mate changes can obtain the cognition of contemporary climate
warming and further provide a reference for adapting to future climate
change.

It is widely acknowledged that GCMs are the primary and most au-
thoritative information on climate change, which have been widely
used to assess impact, explore reasons and develop adaptive measures
of global warming. However, owing to the coarse resolution, GCMs can-
not reflect some characteristic information (i.e., vegetation and soil
types, complex topography, land-sea contrasts, etc.) in local areas ex-
actly, which play an important role in the formation of themicroclimate
uniqueness. Therefore, researchers prefer to a transformed version at
higher horizontal resolutions instead of GCM.

Dynamic downscaling technology is one of possible solutions avail-
able. With realistic details by the representation of fine-scale surface
forcing, driven at the lateral boundaries by atmospheric variables ob-
tained from interpolation of coarse-resolution GCMs, regional climate
models (RCMs) allow the reproduction of small-scale processes that
are unresolved by the low-resolution GCMs. Some popular RCMs, in-
cluding National Center for Atmospheric Research (NCAR)Weather Re-
search and Forecasting Model (WRF), and Abdus Salam International
Centre for Theoretical Physics (ICTP) Regional Climate Model
(RegCM), have been widely used for studies on climate simulation and
projection in China (Liu et al., 2015; Shi et al., 2015; Wang and Yu,
2013; Zhang et al., 2005).

Previous studies have demonstrated that RCMs can add value to
GCMs over different regions of theworld because of their higher resolu-
tion to some extent, but it is unclear as to whether or not the dynamical
downscaling has an overwhelming superiority in reproducing the ob-
served climate change. In addition, there still exists an open question
on whether RCMs with higher resolution have better performance
than those with lower resolution. For example, Cantet et al. (2014)
found that the high resolution showed remarkable advantages in simu-
lating the temperature over the small islands. Lee and Hong (2014)
thought the finer resolution model was more efficient in generating
the main features of air temperature and precipitation. Tolika et al.
(2016) concluded that the higher resolution model presented a better
skill in generating lowwinter temperatures and precipitation over com-
plex terrain. On the other hand, downscaling is not always able to im-
prove the simulation skills of large-scale GCMs (Dosio and Panitz,
2016). Castro (2005) discussed the question when downscaling may
be a valid tool to enhance spatial resolution and when it is not, through
a Regional AtmosphericModeling System (RAMS)with a set of six basic
experiments. They concluded that there were greater errors as both
horizontal grid spacing and domain size increase in RCM, owing to the
failure to correctly retain the value of the large scale GCM. Hong and
Kanamitsu (2014) found that RCMs inherited the biases from the lateral
boundary conditions in driving GCMs and the mismatch of parameteri-
zation and resolution often resulted in an inferior simulation. Hasson
(2016) used eight CORDEX South Asia RCMs against their six driving
CMIP5 experiments to analyze rainfall seasonality over Himalayan wa-
tersheds and concluded that RCM results had higher bias than their cor-
responding driver. In simulations of Indian summer monsoon rainfall,
Singh et al. (2017) thought there was no obvious improvement in the
RCM simulations with respect to their host GCMs for any of the charac-
teristics of Indian monsoon except the spatial variation.

Generally, the higher the ability of a model to accurately reproduce
the present climate, the higher the credibility of the future climate pro-
jection (Corney et al., 2013; Liang et al., 2008; Racherla et al., 2012).
However, the regional climate model with higher resolution will con-
sumemore computing and storage resources.We need to find a balance
between computational requirements and simulation improvements.
Thus, given its considerable requirements for computational resources,
scientific evaluation on the performance of RCM before using the dy-
namically downscaled climate change projections for policy decisions
is very necessary and meaningful.

In this paper, an RCM (PRECIS) is run at two different horizontal res-
olutions over the entire country of China, and the output is then exam-
ined with respect to the effects on temperature and precipitation of the
regional topography. The objectives of this study are to: (1) validate the
performance of PRECIS in simulating temperature and precipitation
over China, (2) assess the added value to GCM at different resolutions
in dynamic downscaling, and (3) given the requirements for computa-
tional resources, answer whether higher-resolution RCM has more ad-
vantages in downscaling. The remainder of the paper is organized as
follows: in Section 2, brief descriptions of the methods and data are in-
troduced. Section 3 compares the seasonal climatology, annual cycles,
interannual variations and extremes of temperature and precipitation
in two RCM runs and their driving GCM. A summary of the key findings
is presented in Section 4.

2. Methods and data

2.1. Regional climate model

The model used in this study is the Providing Regional Climate for
Impacts Studies (PRECIS), which is developed by Meteorological Office,
Hadley Centre. Owing to its ease of use and flexibility, PRECIS has been
employed to conduct climate simulation and projection in different
parts of the world (Buontempo et al., 2014; Wang et al., 2015a; Wang
et al., 2015b). It uses atmospheric boundary and initial condition from
GCM to generate two high-resolution climate data, which are
0.44° × 0.44° (~50 km) and 0.22° × 0.22° (~25 km) at the equator of
the rotated regular latitude-longitude grid. It contains 19 levels in a ver-
tical hybrid-coordinate system, the lowest at ~50 m and the highest at
0.5 hPa with terrain following σ-coordinates used for the bottom four
levels, purely pressure coordinates for the top three levels and a combi-
nation in between (Noguer et al., 2003). The lateral buffer zone contains
a four-point zone at longitude and latitude using a relaxation technique.
In addition, as a highly encapsulated and integrated visualizationmodel
system, PRECIS uses a mass flux penetrative convective schemewith an
explicit downdraught and includes the direct impact of vertical convec-
tion onmomentum (Gregory, 2011; Gregory et al., 2010). The radiation
scheme includes the seasonal and diurnal cycles of insolation,
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computing six short wave bands and eight long wave bands (Slingo,
1989; Slingo and Wilderspin, 2010). The land surface scheme employs
Met Office Surface Exchange Scheme 2.2 (MOSES 2.2) (Essery and
Cox, 2001). More detailed information about the physical processes is
given in Noguer et al. (2003). PRECIS requires certain boundary condi-
tions at the surface and through the depth of the atmosphere. These bi-
nary files are in UM format and contain constant, time-series or annual
cycle data which are read as the model progresses (Table 1). In this
paper, HadGEM2-ES, which is an earth system model of Hadley Centre
Global Environment Model version 2, is used to provide the initial and
lateral boundary conditions to drive the PRECIS. For its atmospheric
component, there is 38 levels extending to ~40 km height in the vertical
direction and 1.25° × 1.875° at horizontal resolution.

2.2. Evaluation methods

In this paper, we look at the relative error (RE) and pattern correla-
tion coefficient (R) relative to the observation to assess the overall per-
formance of simulations, including PRECIS runs and HadGEM2-ES.

In order to quantify the ability of PRECIS to improve (or not) over the
HadGEM2-ES, we follow a method from (Dosio et al., 2015; Fotso-
Nguemo et al. (2017)), who defined an Added Value (AV):

AV ¼ XGCM−XOBSð Þ2− XRCM−XOBSð Þ2

Max XGCM−XOBSð Þ2; XRCM−XOBSð Þ2
� � ð1Þ

where XGCM is the GCM (HadGEM2-ES), XOBS is the observation
(CN05.1), and XRCM are the simulations (PRECIS runs with different res-
olution). As defined above, the AV value is positive where RCM's
squared error is smaller than its driving GCM, suggesting PRECIS
model improves over the corresponding HadGEM2-ES. By contrast,
the negative value represents more errors in RCM.

A coefficient of variation is used to calculate interannual variability
of climatology defined as the ratio of the standard deviation to the
mean (Fotso-Nguemo et al., 2017; Saini et al., 2015). With respect to
the standard deviation of the seasonal and mean climatology, the coef-
ficient of variation removes the dependency on the mean.

CV ¼ Xstd

Xmean
ð2Þ

where X is thedaily temperature or precipitation,Xstd is the annual stan-
dard deviation of X and Xmean is the annual mean value of X.

In addition, two ECTCDI precipitation indices based on daily precip-
itation are used in this paper. The consecutive wet days (hereafter,
CWD), defined as the maximum number of consecutive wet days, indi-
cates precipitation frequency (Eq. (3)), and the simple precipitation in-
tensity index (hereafter, SDII), defined as themean precipitation onwet
days, represents precipitation intensity (Eq. (4)).

CWD ¼ Max Wið Þ ð3Þ

SDII ¼
P

w¼1
W RRw

W
ð4Þ
Table 1
Boundary conditions of PRECIS.

Data type Name Spatial
resolution

Lateral boundary
conditions

HadGEM2-ES historical: ta, ps, ua, va,
hus

1.25° × 1.875°

Surface boundary
conditions

Orographic fields 1.25° × 1.875°
Vegetation and soil fields 0.5° × 0.5°
SST and SICE 1.0° × 0.333°
DMS and SO2 emissions 1.25° × 1.875°
where RR presents daily precipitation amount is more than 1 mm (wet
days), Wi is the ith number of consecutive wet days, W presents total
number of wet days.

2.3. Data

The CN05.1 dataset, which is developed by the ChinaMeteorological
Administration, is used as the observation to validate the performance
of simulations in this study. The dataset is based on 2416 national mete-
orological stations and covers the period 1961 to 2012, and then they
are interpolated onto spatial grids with 0.25° × 0.25° horizontal resolu-
tion. Its variables contain daily mean/maximum/minimum tempera-
ture, precipitation, evaporation, mean wind speed and relative
humidity (Wu and Gao, 2013). The data has been widely employed in
many studies in assessment on past climate change in China (Guo and
Wang, 2016; Wu et al., 2017; Xu et al., 2018). Here, we extract the suc-
cessive 30-years data, including daily mean temperature and precipita-
tion, from 1976 to 2005 to represent the observations of present-day
climate over China. The HadGEM2-ES is also used as a benchmark to ex-
amine the improvement of dynamic downscaling through PRECIS.

The experiment domain of PRECIS covers the entire China region as
shown in Fig. 1. Based on different typical geographical climate features,
the domain is divided into six sub regions, which are the northwest
(NE), north central (N), northeast (NE), west (W), central (C) and
southeast (SE) of China (Fig. 1 and Table 2). In total, the grid points
are about 40,000 in 25-km resolution, and one quarter points in 50-
km one. A long-term continuous run covering the period of 1950 to
2005 is performed as the present-day climate. In this paper, we selected
the continuous 30-years daily dataset of the period 1976–2005 as the
baseline period for model validation. Two experiments (R50 and R25)
differ only in spatial resolution, all other land parameters are the
same, and their running time and hard disk space are list in Table 3.
All RCM and GCM output are validated separately in annual (ANN)
and seasonal (December–January-February, DJF; June–July-August,
JJA). In order to conduct a homogenous comparison, the simulations
are remapped into the same resolution as the CN05.1 dataset.

3. Results

In this section, we analyze the ability of PRECISwith different resolu-
tions to reproduce the climatic characteristics over China, and identify
the added values of RCM by comparing with observation and its host
GCM. Firstly, we discuss the spatial and temporal distribution of mean
temperature and precipitation in annual and different seasons, and cal-
culate their spatio-temporal statistics (i.e., R, RE and AV). Then, annual
cycles and interannual variations of mean temperature and precipita-
tion are investigated over China and sub regions. Finally, the probability
distribution functions (PDFs) and two extreme indices of daily precipi-
tation are also computed.

3.1. Seasonal climatology

The spatial distributions of simulated and observed mean tem-
perature in annual, winter and summer are shown as Fig. 2. Com-
pared to the observation, the major cold (i.e., the northeast and
Tibet Plateau) and warm centers (i.e., the northwest and southeast)
are well simulated by HadGEM2-ES and PRECIS. The simulated an-
nual mean temperature by PRECIS shows colder regions in the north-
west corner edges. Correspondingly, the biases between observation
and simulations are presented in Fig. 3. Except for summer, the mean
temperature fromHadGEM2-ES is colder than observation over most
regions in China, especially in the margin of Kunlun Mountains with
about 8 °C cold bias, however, the temperature in the Ili River Valley
is overestimated compared to observation. The temperature simu-
lated by GCM over the north of Xinjiang in winter is colder, while it
is warmer in summer. Bounded on Tianshan Mountains, the bias in



Fig. 1. Study domain in PRECIS climate simulation experiment.
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the south and north of Xinjiang is also opposite in summer. PRECIS
shows a distinctly more reasonable result than its forcing GCM. The
cold biases in annual temperature are corrected in most of areas ex-
cept for the northwest edges of Xinjiang, even though the RCM re-
sults seem a bit hypercorrect in summer and winter. For example,
in winter, the cold bias from HadGEM2-ES over the east of Xinjiang
is well corrected, while the bias is changed from cold to warm in
the north through PRECIS downscaling. In summer, the boundary
line (Tian Shan Mountains) between cold and warm biases from
GCM is eliminated obviously by RCM over the northwest of China,
and instead, many warm biases are overwhelming, especially in the
south of Xinjiang. Over the northeast of China, the simulated annual
mean temperature by GCM also shows a similar spatial distribution
and the boundary line between cold and warm biases is the Greater
Khingan Mountains. Compared with the observation, there is appar-
ent colder temperature in winter and warmer in summer from GCM
in the whole northeastern plain of China, while PRECIS shows a lot of
improvements and that is especially true in the northernmost region
for R25. Relative to its driving data, PRECIS also shows significant
Table 2
Climatic characteristics of sub regions in China.

Sub region Abbreviation Coordinates

Northwest China NW 73.2°~97.6°E 36.2°~

Northcentral China N
96.7°~123.3°E
36.2°~49.5°N

Northeast China NE
123.3°~135.2°E
36.2°~53.7°N

West China W
78.2°~103.1°E
26.8°~36.2°N

Central China C
103.1°~123.1°E
30.8°~36.2°N

Southeast China SE
103.1°~123.1°E
20.9°~30.8°N
advantages in temperature simulation over the southeast of China,
where significantly reducing the regions of cold bias, especially in
annual and summer. However, the mean temperature in winter is
still slightly underestimated in Sichuan Basin, despite all the im-
provements. In the Tibetan Plateau region of western China, the per-
formance of PRECIS in annual mean temperature is not better than
HadGEM2-ES, because both R50 and R25 definitely underestimate
the mean temperature in nearby the Himalayas and some southeast-
ern regions of Tibet. The mean temperature simulated by PRECIS in
summer is better than that in winter, when the temperature is obvi-
ously colder than observation over the Tibet Plateau.

Overall, compared to the observation, the mean temperature simu-
lated by GCM has more biases than PRECIS, who corrects considerable
cold biases over most areas in China, especially in the east. However,
PRECIS has a phenomenon of overcorrection in some regions, such as
the northern Xinjiang. In addition, higher-resolution R25 in some high
altitudes and complex terrains (i.e., Tianshan or Greater KhinganMoun-
tains) can present more detail information than its driving data in spa-
tial distribution.
Climatic characteristics

49.5°N Arid continental climate

Temperate continental monsoon climate

Temperate monsoon climate

Plateau mountain climate

Warm temperate zone and semi-clouding monsoon climate

Subtropical monsoon climate



Table 3
Computational resources consumption.

Experiments Resolution Grids Elapsed time Disk space requirement

R50 50 km ~10,000 ~1 month ~1.4 TB
R25 25 km ~40,000 ~3 months ~4.1 TB

Note that the above statistics are summarized from the testing results of a professional Or-
acle Server with a 2.3 GHz Intel 36-core processor and 384 GB memory.
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Table 4 presents the statistics of correlation coefficient (R), relative
error (RE) and added value (AV) in domain-averaged temperature
over China and sub regions. It can be seen that the correlation
Fig. 2. Spatial distribution ofmean temperature in annual (first column),winter (second column
simulations are GCM (second row), R50 (third row) and R25 (forth row), respectively. (Unit: °
coefficients in R50 and R25 are higher than their driving GCM. The R
values in annual and winter are exceeding 0.9 over most of regions in
China. However, over the NE region, the values in downscaling results
are lower in summer (about 0.8). Similar with the spatial distribution,
over the NW region, although the correlation coefficients between sim-
ulations and observation are lower than that over other regions, PRECIS
still makes dramatic improvements, for example, the R value increases
from 0.6 in GCM to 0.8 in RCMs approximately in winter. Furthermore,
RCMs also obviously decrease the relative errors in the largest part of
China, except in the western region, and the relative errors become
smaller with the increase of spatial resolution. Nevertheless, over the
) and summer (third column). The CN05.1 data is shown as observation (first row), and the
C).



Fig. 3. Biases ofmean temperature in annual (first column), winter (second column) and summer (third column), compared to CN05.1 (used as observation), for the GCM (first row), R50
(second row) and R25 (third row), respectively. (Unit: °C).

Table 4
Statistics of correlation coefficient (R), relative error (RE) and added value (AV) in temperature over different regions.

Reg. Sim. R RE (%) AV

ANN DJF JJA ANN DJF JJA ANN DJF JJA

China GCM 0.95 0.96 0.93 −20.91 45.53 2.93
R50 0.97 0.96 0.97 −3.68 16.13 6.65 0.08 0.29 −0.02
R25 0.97 0.95 0.97 −4.47 14.12 5.87 0.09 0.30 0.00

NE GCM 0.92 0.90 0.90 −49.84 22.36 6.79
R50 0.94 0.95 0.82 24.17 −0.46 10.02 0.20 0.77 −0.35
R25 0.94 0.95 0.81 15.21 −0.14 7.82 0.22 0.78 −0.12

N GCM 0.91 0.92 0.89 −15.18 29.64 8.72
R50 0.96 0.94 0.96 7.86 3.22 9.15 0.26 0.55 −0.03
R25 0.96 0.93 0.95 5.05 1.91 7.72 0.29 0.54 0.06

C GCM 0.91 0.92 0.90 −5.63 −169.25 2.03
R50 0.98 0.94 0.97 3.77 −30.93 7.33 0.11 0.49 −0.13
R25 0.97 0.94 0.95 3.03 −13.81 6.94 0.13 0.49 −0.10

SE GCM 0.88 0.91 0.86 −5.87 −18.20 −3.39
R50 0.96 0.94 0.92 6.42 13.89 1.96 0.04 0.16 0.21
R25 0.96 0.95 0.92 6.00 14.22 1.88 0.07 0.17 0.21

NW GCM 0.80 0.59 0.77 −57.74 46.47 −5.33
R50 0.95 0.78 0.97 −0.02 17.08 16.77 0.46 0.32 −0.06
R25 0.95 0.77 0.97 4.17 10.91 15.91 0.39 0.36 −0.10

W GCM 0.89 0.91 0.82 86.67 37.41 16.47
R50 0.96 0.92 0.86 232.73 44.47 −19.63 −0.41 −0.08 0.05
R25 0.90 0.92 0.83 238.02 45.71 −19.26 −0.42 −0.11 0.01

6 J. Guo et al. / Science of the Total Environment 718 (2020) 137350
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Tibet Plateau, there is more uncertainties in dynamic downscaling,
where the relative errors are larger than its corresponding driver, and
the relative error even changes sign in summer.

From the analysis of the added value, PRECIS succeeds at reducing or
correcting the bias from its forcing GCM over eastern regions, especially
in winter. The added values in the north are larger than those in the
south. However, the biases are still present or even larger portions
over the western region, where the negative AV of temperature in an-
nual and winter implies that the biases in downscaling are larger than
its GCM, relative to the observation.
Fig. 4. Spatial distribution of mean precipitation in annual (first column), winter (second colum
the simulations are GCM (second row), R50 (third row) and R25 (forth row), respectively. (Un
Figs. 4 and 5 illustrate simulated precipitation distribution by
HadGEM2-ES and PRECIS and their biases compared to observation, re-
spectively. All models capture the gradually decreasing pattern of pre-
cipitation from southeastern to northwestern China as shown in
observation satisfactorily, though themagnitude of bias was not identi-
cal. However, note is that there is artificial precipitation center simu-
lated by HadGEM2-ES over the Taklamakan Desert in southern
Xinjiang, and the pseudo-wet center may be a common problem in
GCMs on the west of China (Gao et al., 2009; Guo and Wang, 2016),
while this error is well corrected by PRECIS in the course of dynamical
n) and summer (third column). The CN05.1 data is shown as observation (first row), and
it: mm/day).



Fig. 5. Biases of precipitation in annual (first column), winter (second column) and summer (third column), compared to CN05.1 (used as observation), for the GCM (first row), R50
(second row) and R25 (third row), respectively. (Unit: mm/day).
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downscaling. Other than these, relative to observation the most of
southern regions receive more annual mean precipitation both in
HadGEM2-ES and PRECIS simulations, but the performance of the latter
are better than the former over the southeastern of Tibet Plateau. In
winter, mean precipitation simulated by GCM and RCM in the southeast
is overestimated. Furthermore, the downscaling results are obviously
wetter than observation in the parts of the Yangtze River Basin (above
4 mm/day). On the other hand, PRECIS also is proved its advantage to
simulate the summer precipitation. The results simulated by GCM are
worse than those from RCM in summer, and some clearly overvalued
regions, such as the south of Xinjiang, Tibet, Guangzhou and Guizhou,
even exceeding 5 mm/day, are improved by PRECIS. However, the pre-
cipitation in the Yangtze River Basin is undervalued in the R50 simula-
tion (about 2 mm/day) but this bias is smaller in the R25 (about
1 mm/day). In addition, it is noted that R25 shows a pronounced wet
spot in the Qinghai Lake, which is the biggest inland lake in China.
Due to higher resolution in R25, PRECIS can reflect wetter climatic char-
acteristic in lake environments when dynamical downscaling, resulting
in more precipitation than R50 and GCM. However, compared with the
observation, the finer spatial scale information could generate more
“noise” in that lake so that there is an overestimation.

As shown in Table 5, in general, the statistics in domain-averaged
precipitation are worse than those in temperature. Specifically, the
correlation coefficient in precipitation is smaller and the relative error
is larger than that in temperature. Moreover, due to the climatically
small precipitation amount in winter, the error is bigger than that in
summer. These results are in line with the findings of Xu et al. (2018).
However, an improvement is clear for the downscaled results, as
shown by the AV values, which is positive in most of regions, especially
in winter in the northeast (~0.78 AV value). On the other hand, the cor-
rection coefficients in precipitation are lower and the relative errors are
larger in RCMs than its forcing GCM. That is to say, the PRECIS has not
shown a holistic improvement in seasonally and regionally averaged
precipitation for historical decades. Moreover, the positive relative er-
rors of R25 are larger than those of R50 inmost regions of China, indicat-
ing that 25-km PRECIS produces more precipitation than 50-km one.
This may be due to more orographic precipitation formation in the
R25 (Tselioudis et al., 2012).

3.2. Annual cycles

Area-averaged annual cycles in mean temperature over China and
sub regions are presented in Fig. 6.Whether GCMor RCM, the unimodal
distribution of mean temperature in the annual cycle is reproduced sat-
isfactorily, that is, the highest temperature occurs in July and the lowest
is in January or December. Fig. 7 shows the biases between simulations



Table 5
Statistics of correlation coefficient (R), relative error (RE) and added value (AV) in precipitation over different regions.

Reg. Sim. R RE (%) AV

ANN DJF JJA ANN DJF JJA ANN DJF JJA

China GCM 0.82 0.89 0.72 49.13 89.81 33.94
R50 0.81 0.82 0.79 35.90 144.45 13.17 0.08 0.29 −0.02
R25 0.79 0.79 0.77 44.07 152.81 21.83 0.09 0.30 0.00

NE GCM 0.73 0.54 0.73 13.50 25.01 5.42
R50 0.63 0.69 0.56 14.44 65.17 −1.52 0.20 0.77 −0.35
R25 0.62 0.69 0.52 21.81 68.87 7.58 0.22 0.78 −0.12

N GCM 0.82 0.76 0.88 21.83 462.27 4.71
R50 0.72 0.47 0.83 32.33 181.47 7.99 0.26 0.55 −0.03
R25 0.62 0.45 0.69 40.75 184.78 16.96 0.29 0.54 0.06

C GCM 0.71 0.79 0.76 10.88 78.74 −10.16
R50 0.50 0.73 0.43 31.39 215.88 −12.54 0.11 0.49 −0.13
R25 0.55 0.72 0.51 39.63 238.41 −7.84 0.13 0.49 −0.09

SE GCM 0.64 0.71 0.43 27.63 73.02 19.94
R50 0.44 0.56 0.63 17.64 105.05 20.30 0.04 0.16 0.21
R25 0.44 0.54 0.56 24.18 112.44 8.32 0.07 0.17 0.21

NW GCM −0.14 0.00 −0.12 262.58 150.42 214.71
R50 0.68 0.67 0.72 22.45 49.19 −10.29 0.45 0.32 −0.06
R25 0.65 0.61 0.70 21.14 33.36 −8.49 0.39 0.36 −0.10

W GCM 0.66 0.52 0.44 115.236 244.00 84.31
R50 0.62 0.52 0.53 107.056 434.81 65.32 −0.41 −0.08 0.05
R25 0.60 0.44 0.54 121.108 451.80 81.07 −0.42 −0.11 0.01
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(i.e., GCM, R50 and R25) and observation. Overall, the monthly mean
temperature simulated by PRECIS is warmer than that by HadGEM2-
ES. It is also clear that RCM simulations outperform its forcing GCM
over all regions but the west. Specifically, GCM shows considerable
biases in colder months, such as January, February and December, but
Fig. 6.Mean temperature in annual c
they tend to be identified with greater corrections by the RCM down-
scaling. On the other hand, GCM is better able to reproduce mean tem-
perature in several warmermonths. For example, in the whole of China,
the bias is less than 1.0 °C in June, July and August in GCM. On the other
hand, over the northeastern and northern regions, the improvement
ycle over China and sub regions.



Fig. 7. Biases of mean temperature in annual cycle relative to observation over China and sub regions.
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through dynamical downscaling is more visible. For instance, in January
and February, the mean temperature simulated by GCM is undervalued
about 4.0 °C, while RCM agrees fairly well with observation. Compared
with other regions, the simulated mean temperature over central
China from RCM is the most consistent with observation, with bias
within 1.0 °C. Except for March, PRECIS also shows a good performance
over the southeast at most of months. It is very clear that PRECIS tends
to correct the bias resulting from its forcing GCM over the northwest,
and for most of months, such as from January to May or September to
December, these biases are correctedwell, however, PRECIS shows a hy-
percorrection during summer months. Meanwhile, RCM has a worse
ability in simulating temperature than GCM over the west, with wildly
underestimated values.

In general, the mean temperature simulated by PRECIS in an-
nual cycle is closer to observation than that from GCM. For RCM,
the spatial resolutions do not show a pronounced improvement,
maybe just slightly superiority over the northwest, because the
distribution lines drawn by R50 and R25 basically coincide with
each other.

Relative to the reference data CN05.1, the mean precipitation in
annual cycle during the present-day period over China and sub re-
gions is shown in Fig. 8 for PRECIS and its driving GCM, and the cor-
responding biases are presented in Fig. 9. Basically, the main rainy
months are well simulated by PRECIS and GCM. Over the whole of
China, PRECIS and HadGEM2-ES show an obvious overestimation in
monthly mean precipitation relative to observation, especially for
latter part of the year, however, the results from RCMs are better
than those from GCM in some rainy months. Specifically, from April
to August, there is a bias with over 1.0 mm/day for GCM in mean pre-
cipitation, while the bias is smaller for RCM, especially for R50. The
precipitation is also well simulated over the northeastern and north-
ern China, with the bias of 0–1.0 mm/day, except for R50 in August.
Compared with two regions just noted, the precipitation in the cen-
tral and southeast is more volatile. For example, in August or Sep-
tember, there is a negative bias (−1.0 mm/day) in simulations,
while the bias is positive in other months. For the central, high-
resolution results look worse than GCM and the biases of R50 and
R25 are even more than 2.0 mm/day. Multiple differences between
RCMs and GCM over the south are found. From April to August, the
performance in RCM is better than that in GCM and R25 also shows
its own advantage in high spatial resolution, whereas in winter
months, such as January and February, the biases are larger (near
2.0 mm/day) in PRECIS than its driving data. It is noted that a great
improvement for RCM is found in the northwest, and considerable
overvalued precipitation in GCM is corrected by R50 and R25. Over
the west, the precipitation is totally overestimated throughout the
year and the simulated skills for PRECIS and HadGEM2-ES have
worse in summer months, in other words, to a certain extent,
whether RCM or GCM, they are failed in precipitation simulation in
annual cycles over the high-cold Tibet Plateau.

Overall, in annual cycles, theperformance in temperature simulation
is better than in precipitation. For high-resolution RCM, the precipita-
tion results failed to show an overwhelming superiority than its host
GCM like that in temperature simulation.



Fig. 8. Mean precipitation in annual cycle over China and sub regions.
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3.3. Interannual variation

Fig. 10 presents the interannual variability in temperature and pre-
cipitation over China and sub regions. For the entire region of China,
the coefficients of variation of temperature simulated by PRECIS and
HadGEM2-ES are analogous to the observation, though the latter pro-
duces a larger interannual variability than R25 and R50. In the view of
sub regions, the NE region shows greater interannual variability as com-
pared to other regions, especially for the driving GCM with exceeding
0.5, suggesting that a broadening of annual temperature distribution
and more extremes relative to the mean climate. Different from other
regions, theCVvalue is negative over thewestern region, because its an-
nual mean temperature is below freezing point. With the exception of
central region, the CV of temperature in winter is small (−0.1–0.1). It
should be mentioned that the CV value is positive for observation and
PRECIS, and the result of R25 is generally in agreement with the obser-
vation, while HadGEM2-ES shows an opposite sign over the central re-
gion of China. On the other hand, the CV values in summer are smaller
than those in winter, and not exceeding 0.05. The largest CV value in
winter is presented over the west region while the smallest is shown
over the southeast.

With respect to precipitation, the CV values simulated from PRECIS
are underestimated in most parts of China relative to the observation,
while the values from GCM in the northern regions, such as the north-
east and north, are larger than those in the observation. The high-
resolution R25 has better skills in simulating the interannual variation
over the arid northwest region than R50 and its driving GCM.
Seasonally, there is a greater interannual precipitation variability in
winter than summer and the CV values are exceeding 0.2 in many re-
gions, because the mean precipitation in winter is smaller. On the
other hand, the observed CV is generally larger than in simulations in
winter, though the GCM is worse than RCM to some extent. By contrast,
the same does not hold true for precipitation in summer, when the
overvalued CV values are found in PRECIS and HadGEM2-ES. As the
major wet areas, the simulated interannual variability is smaller in the
southeast than that in observation. However, the summer precipitation
variability is closer to observation with resolution improvement.

3.4. Precipitation extremes

In general, it is more important to simulate or project extreme pre-
cipitation rather than mean precipitation because of the significant so-
cial and economic impacts associated with it (Liwei Zou, 2013). From
above analysis, we found that PRECIS produces a distinctive advance
in simulating the general climatology over China. In this section, we ex-
amine whether the downscaled precipitation results, especially in ex-
tremes, are improved over the large-scale driving ones as well. Fig. 11
presents the probability distribution functions of daily precipitation
over China and different sub regions for two downscaled PRECIS runs
and their forcing GCM. Over the whole of China, the days of small pre-
cipitation (less than 1 mm/day) from observation is more than those
simulated by RCMs and GCM. The probability of daily precipitation
amount between 1 mm and 4 mm in observation is in close agreement
with the simulations. The tails of distribution curves represent the



Fig. 9. Biases of mean precipitation in annual cycle relative to observation over China and sub regions.
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occurring probability of extreme precipitation. It is evident that the
downscaled results outperform those of the driving GCM, whose prob-
ability of extreme precipitation is higher than RCMs and observation.
In general, the simulated shapes of precipitation distribution curves
are closer to the observation over the southeast and north regions
than others. On the central of China, PRECIS also shows better perfor-
mance in simulating the moderate precipitation (14–20 mm/day),
while a pronounced underestimation is found in the driving GCM.
Moreover, the improvement is especially evident on the northwest re-
gion, where large overestimation simulated by GCM is found, while
there is very substantial improvement for RCMs, especially for R25 in
simulating 4–5 mm daily precipitation. On the other hand, over the
Tibet Plateau, whether PRECIS or its driving GCM, an obvious overesti-
mation persists from 3mm in daily precipitation, even the daily precip-
itation exceeding 8 mm is simulated in error, compared with the
observation.

Two ETCCDI precipitation extreme indices are analyzed in this paper
as well. The CWD (consecutive wet days) represents the frequency of
precipitation, and the SDII (simple precipitation intensity index) indi-
cates the precipitation intensity. Overall, PRECIS shows better perfor-
mance in simulating two extreme indices than its forcing GCM over
China. As shown in Fig. 12, the CWD in GCM is more 25 days than
those in observation over the west of Xinjiang, the edge of Tibet, most
parts of Yunnan and the east of Sichuan, while these biases are well
corrected by RCMs. On the other hand, two RCMs and their forcing
GCM tend to underestimate the consecutive wet days over scattered re-
gions of Sichuan, and it seems that R25 and R50 enlarge these biases.
Other than these, the precipitation intensity index (SDII) is also
simulated by PRECIS over China, in spite of some biases in spatial distri-
bution (Fig. 13). Again, the PRECIS clearly outperforms its driving GCM,
which has large overestimated SDII in the west of China and evidently
underestimated one in the east. However, that same dynamic down-
scaling, the R25 seems to be hypercorrected as compared to R50 in
thewestern China, where scattered regions are overvalued, further sug-
gesting that the downscaling results with higher resolution can simu-
late more precipitation than observation.

4. Discussion and conclusion

Climate simulations in China through a regional climate model
PRECIS at different resolutions were compared to those of its driving
GCM. Overall, the PRECIS can reproduce the spatial distribution of an-
nual and seasonal mean temperature and precipitation over the largest
part of China, especially in the east. The high resolution in the domain
and physical packages of PRECIS play a vital role and contribute to
these improvements.

For temperature, the cold biases in HadGEM2-ES have been reduced
by PRECIS, in spite of an overcorrection in the northern Xinjiang. In the
most regions of China, results with higher resolution show smaller rel-
ative errors and larger added values. PRECIS runs have small differences
in spatial distribution, and the higher-resolution R25 truly can yield
more detail information than R50 and its driving data in high and cold
region of western China. However, R25 has colder biases than R50, sug-
gesting that RCMwith higher resolution does not always produce more
accurate output in the process of downscaling. This finding is also con-
sistent with other studies (Mishra et al., 2017; Xu et al., 2018). An



Fig. 10. Coefficient of variation (CV) over China and sub regions. The left column is CV of temperature and the right is CVof precipitation. From top to bottom is annual,winter and summer.
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explanation could be that the R25 can represent more land cover types
(i.e., snow cover, glaciers and permafrost) than coarse-resolution
model. Under the context of global warming, these land cover types
willmelt and absorb heat from surrounding air further, leading to colder
air temperature (Guo and Wang, 2016). In addition, most boundary
data of PRECIS have a resolution of 1.25° × 1.875° (about 150 km). Actu-
ally, whenwedesign a nested downscaling experiment, a ratio in spatial
resolution is generally about 3 between parent domain and sub domain
(i.e., WRF). Therefore, this kind of resolution could be more suitable to
dynamically downscale to R50 (50 km). This may also be an important
reason. Furthermore, there is worse performance for PRECIS over com-
plex terrain areas, such as the western part of China. Except for the
model's reason itself, these regions usually have few or no station obser-
vations available, which may lead to somewhat inaccurate or at least a
large uncertainty when interpolating from stations to grids (Gao et al.,
2009; Guo and Wang, 2016).

On the other hand, PRECIS also captured the major spatiotemporal
distribution in precipitation roughly, and an artificial precipitation cen-
ter from HadGEM2-ES in the northwest is well corrected by PRECIS in
the course of dynamical downscaling. However, compared to the
mean temperature, it is difficult to determine exactly a systematic and
homogeneous improvement of performance of the downscaled simula-
tions on its driving GCM, in otherwords, the PRECIS still lacks of a pretty
good capability, which can simulate accurately in seasonally and region-
ally averaged precipitation for historical decades. It is widely accepted
that better performance or larger added value is in temperature than
precipitation for climate models (Feser et al., 2011). Mishra et al.
(2017) thought the variables (i.e., temperature, winds, humidity, etc.)
as the boundary conditions to drive RCM come from the GCM directly,
thus it is not surprising that simulated mean temperature tends to
have same similar at least near its host GCM. On the other hand, some
comprehensive variables, such as precipitation, are mainly affected by
the cloud and convective schemes in dynamic and thermodynamic
large scale environment. The precipitation is overestimated by PRECIS
over many regions in China, especially in annual cycles, and the extent
of overestimation in downscaling is larger with the increase of spatial
resolution. More detailed landform conditions and local hydrodynamic
variability are possible reasons for this (Castro, 2005). In other words,
these detailed information may not play such a role or even counteract
sometimes. Specifically, RCMwith finer resolution could generate more
“noise” over special regions, such as great rivers and lakes, resulting in
more precipitation in R25 than R50. Furthermore, whether RCM or
GCM, they are failed in precipitation simulation in annual cycles over
the high-cold Tibet Plateau. Fundamental errors from GCM are one of
potential causes. Although the PRECIS has corrected or reduced the er-
rors to some extent, the PRECIS's performance is strongly limited by
the skill of its driving GCM (Laprise, 2014; Racherla et al., 2012; Tolika
et al., 2016). The PRECIS runs are initialized with dynamic and thermo-
dynamic conditions in HadGEM2-ES, which itself does not capture the
spatiotemporal pattern in precipitation well, it is not surprising that



Fig. 11. Probability distribution functions of daily precipitation over China and different sub regions.
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PRECIS does not either perfectly. Therefore, it is important to improve
the long-range climate ability of GCM or using bias-corrected forcing
in downscaling.

Regarding the overall interannual variability, RCMs do not show ob-
viouslymore advances than their driving GCM inmost regions of China,
though the results of interannual variability in temperature are better
than those in precipitation. For precipitation, the variation is
underestimated in summer while the value is overestimated in winter
compared to the observation. The HadGEM2-ES used in the present
work produced a smaller CV than RCMs in precipitation. This result
are also in line with Dosio and Panitz (2016) and Lee and Hong
(2014), who compared RCM's results at different resolutions to those
of GCM, indicating that the precipitation variance increase with the
model resolution. A probable reason for this difference may relate to
the uncertainties in PRECIS, which has more detailed land schemes
and complex model physical parameterizations. It also means PRECIS
will produce more model uncertainties when downscaling in addition
to its inherited uncertainties from driving GCM (Corney et al., 2013;
Guo and Wang, 2016; Yang et al., 2015). Nevertheless, it is noted that
the interannual variability reproduced by the R25 is closer to observa-
tion than that in the R50 and its driving GCM over the northwestern
arid and semi-arid region, especially for precipitation.

In addition, PRECIS reflects its superiority in simulating precipitation
extremes as well. It is evident that the downscaled results outperform
those of the driving GCM, whose probability of extreme precipitation
is higher than RCMs and observation. Furthermore, it was shown that
PRECIS is able to better simulate some precipitation indices such as
the number of consecutive wet days and simple precipitation intensity
index in spatial distribution, despite some biases in local regions of
western China, suggesting that high resolution is important in



Fig. 12. Spatial distribution for the CWD. The second row is the biases between simulations and observation. (Unit: days).
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simulating the precipitation extremes for regional climate models. The
results are consistent with other studies. For example, Devanand et al.
(2018, 2019) thought that the precipitation bias over the Indian mon-
soon region was caused by the smoothened topography in the global
model and accurate orographic and land-atmosphere representation
were necessary to capture the pattern of monsoon rainfall. In addition,
similar to the mean precipitation, the R25 seems to simulate more ex-
treme precipitation than R50, further suggesting that the downscaling
with higher resolution can simulate more precipitation.

However, in terms of computational resources consumption, the
R25 spent about three times as much as time and disk space compared
Fig. 13. Spatial distribution for the SDII. The second row is the
to the R50, suggesting that such a high cost of RCM do not always bring
better performance in dynamic downscaling (i.e., precipitation). Thus, it
is important to investigate how the spatial resolution of regional climate
simulation affects the added values of dynamical downscalingunder the
limited computational resources.

In future, some issues remain open to further research. For instance,
with the development of GCMs, their horizontal resolutions are becom-
ing finer and finer. At that time, whether the added value is not big
enough through RCMs, and which is the better approach to get more
plausible climate projection, also need investigation. Nevertheless, in
this paper, we stress the importance of serious evaluation on the
biases between simulations and observation. (mm/day).
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performance of regional climatemodels before utilizing their output for
impacts assessment and subsequent policy making for sustainable cli-
mate change adaptation.
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