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Abstract Impacts of climate change relating to public health are often determined by multiple climate
variables. The health-related metrics combining high-temperature and relative humidity are most con-
cerned. Temperatures, relative humidity and relationship among them are investigated here for a compre-
hensive assessment of climate change impacts over China. A projection of combined temperatures and
humidity through the PRECIS model is addressed. The PRECIS model’s skill in reproducing the historical cli-
mate over China was first gauged through validating its historical simulation with the observation data set
in terms of the two contributing variables. With good results of validation, a plausible range of combined
temperatures and relative humidity were generated under RCPs. The results suggested that the annual
mean temperature of China will increase up to 6∘C at the end of 21st century. Opposite to the significantly
change in the temperature, the maximum magnitude of changes in relative humidity is only 8% from the
value in the baseline period. The dew point temperature is projected to be 14.9∘C (within the comfortable
interval) over the whole nation under high radiative forcing scenario at the end of this century. Therefore,
the combination effects of high temperatures and relative humidity are substantially smaller than gener-
ally anticipated for China. Even though the impact-relevant metric like the dew point temperature is not
projected as bad as the generally anticipated, we found that the frequency of high-temperature extremes
increases up to 40% and the duration increases up to 150% in China. China is still expected to have more
number of extremely hot days, more frequent high-temperature extremes, and longer duration of warm
spell than before. Regionally, South China has the smallest changes in the mean, maximum and minimum
temperatures while the largest increases in all five high-temperature indices. Consequently, the climate
over South China for two future periods will be changing more drastically than the baseline period. Extra
cautions need to be given to South China in the future.

1. Introduction

China was experiencing more frequency and intensity of extreme temperature events than before in the
past 10 years (Chen et al., 2015; Chen & Zhou, 2017; Ding et al., 2010; Fang et al., 2008; Fang et al., 2015; Li
et al., 2017; Ren & Zhou, 2014). In detail, analysis based on longer data records showed that the hot days and
heat waves events sharply increased by more than 10% over China in the last decade (Ding et al., 2010). Stud-
ies for mainland China also suggested a countrywide increase in frequency of hot events and warm days
(nights). For example, Ren and Zhou’s research indicated that annual highest daily maximum temperature
and daily minimum temperature increased across the country. Their results also showed that warm nights
(days) significantly increased at a rate of 8.16 days (5.22 days) over the whole nation for the past 10 years (Ren
& Zhou, 2014). Temperature is one of the most important climate variables with regard to human comfort,
and excessively high temperatures account for more fatalities than lightening, floods, tornadoes, and hur-
ricanes do in China (Lin et al., 2016; Ma et al., 2017; Wang et al., 2015b). But the effects of high-temperature
extremes can be compounded by other factors, such as the air pollution, intensity of sunlight, strength
of wind and humidity. Particularly, the humidity can be combined with high temperatures to create some
indices such as apparent temperature, heat index, and dew point temperature (Isaac & van Wijngaarden,
2012). Such indices account for temperatures that can be perceived by the human body. One of the human
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body’s effective mechanisms in guarding against excessive heat is perspiration. Perspiration cools the body
because the process of sweat evaporating into the atmosphere consumes latent heat. If the atmosphere
has a high humidity, the rate of evaporation process is retarded and loss of latent heat is reduced. This
results in the threat of heat stroke (a potentially fatal caused by increase in the body’s internal temperature)
faced by people. Therefore, useful guidelines can be provided for people by studying the combination of
heat and humidity. To this end, temperature and humidity are considered as well-established risk factors for
human health under climate change. For a comprehensive assessment of the combination impacts under
climate change, it is imperative to take into account for the uncertainties in both contributing variables. It is
well understood that the different variables can be linked through first principles or basic mechanisms. For
instance, the Clausius–Clapeyron (C-C) equation illustrates that saturation vapor pressure increases expo-
nentially with temperature (Sperber et al., 2013). In the other word, warmer air is able to hold more moisture.
Despite the knowledge about the relationship between temperature and humidity, it is often ignored in the
context of projection. For example, the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change provides projections of many variables including temperature and humidity, but each of them is
analyzed and discussed separately.

Some recent studies have quantified how relationships across variables evolve into the future. Beniston
analyzed the trends in joint quantiles of temperature and precipitation in Europe since 1901 and projected
them for 2100 (Beniston, 2009). Utsumi et al. investigated the applicability of the C-C relation to the scal-
ing relationship between extreme precipitation intensity and surface air temperature (Utsumi et al., 2011).
There are also some studies having quantified how often-correlated uncertainties in the relationships can
be transformed into joint probabilistic projections. Watterson calculated joint PDFs for climate change with
properties matching Australian projections (Watterson & Whetton, 2011). Tebaldi and Sanso applied a hier-
archical Bayesian approach to obtain the joint projections of temperature and precipitation change from
multiple climate models (Tebaldi and Sanso, 2009). Fischer and Knutti used simulations from 15 general
circulation models (GCMs) of the new Climate Model Intercomparison Project phase 5 to demonstrate that
models projecting greater warming also show a stronger reduction in relative humidity (RH) and uncer-
tainties in some impact-relevant metrics such as extremes of health indicators are substantially smaller
than generally anticipated. However, two drawbacks can be concluded from the previous researches (Fis-
cher & Knutti, 2013). First, few researches have been carried out to address joint projections in temperature
and humidity which are considered as well-established risk factors for human health. Second, for existing
researches on projecting temperature and humidity, there is no Regional Climate Models (RCMs) but GCMs
having been applied to address the joint projection in these two variables. However, GCMs assume that RH
stays constant and will increase at a rate of approximately 6.8%/∘C as indicated by the C-C relationship. Sub-
stantial researches have found that the assumption of constant RH does not hold across all temperatures.
Specially, our recent study on investigating the relationship between extreme sub-daily precipitation and
surface temperature in China has revealed that RCMs with a closure of the convection scheme based on
moisture convergence can better simulate the relationship than GCMs (Zhu et al., 2017). We will elaborate
on this in the following section.

The objective of this study is to address projections of combined temperature extremes and humidity
through a RCM. The selected RCM’s skill in reproducing the historical climate over China will be gauged
through validating its historical simulation with the observation dataset in terms of temperatures and
RH. Particularly, the simulated relationship across two variables will be examined for addressing the joint
behavior of uncertainties. After the validation, the independent climate variables will be projected from the
dynamical downscaling under different greenhouse gas emission scenarios. Projections will be combined
to quantify how the relationship between the two variables evolves under climate change. Eventually,
the impacts of climate change on temperature extremes and RH can be assessed comprehensively by
considering the joint behavior of uncertainties.

2. Models, Experimental Design, and Data

The RCM used in this study is the PRECIS model developed by UK Met Office Hadley Centre (Jones et al., 2004;
Wilson et al., 2015). It is an atmospheric and land surface model of limited area and high resolution which is
originally designed to operational forecast and satisfy atmospheric research needs. It describes dynamical
flow, the atmospheric sulfur cycle, clouds and precipitation, radiative processes, the land surface, and the
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Figure 1. Model domain, topography (m), and the five subregions: Northwest,
Northcentral, Northeast, Tibet, and South).

deep soil. The PRECIS model has been
widely applied in regional climate
simulations (Feng et al., 2012; Wang
et al., 2014, 2015a; Xu et al., 2006), and
its ability in simulating climatologi-
cal mean and extreme climate over
China has been tested and verified (Xu
et al., 2009). Moreover, PRECIS exhibits
improvements in its simulating perfor-
mance of the inter-annual variations
presented by the driving data (Wang
et al., 2015a).

The HadGEM2-ES (Hadley Centre
Global Environment Model version
2 – Earth Systems) provides the mete-
orological forcing at the boundaries
of the PRECIS model’s domain as its
Lateral Boundary Conditions to be

dynamically downscaled for the high-resolution historical and future climate (Collins et al., 2008). The
HadGEM2-ES climate model comprises an atmospheric GCM at N96 and L38 horizontal and vertical resolu-
tion, and an ocean GCM with a 1∘ horizontal resolution (increasing to 1/3∘ at the equator) and 40 vertical
levels. This model has also been validated that it has the ability in simulating climate over China (Yan et al.,
2015).

The computational domain of PRECIS simulation is centered at (34∘N, 105∘E), and it covers China with
292× 186 horizontal grid points and a lateral buffer zone of eight grid points. The spatial resolution is
0.22∘ × 0.22∘. The PRECIS model runs continuously from1969 to 2005 for the historical simulation and from
2006 to 2099 for the future projections. Future simulations are forced with specified concentrations con-
sistent with a medium emission scenario (RCP4.5) and a high emission scenario (RCP8.5). RCP4.5 is a sta-
bilization scenario, with the total radiative forcing of 4.5 W/m2 until 2100. RCP8.5 is a scenario of compar-
atively high greenhouse gas emissions with stabilizing near 8.5 W/m2 (Hewitson et al., 2014; Moss et al.,
2010). With these two RCP scenarios, changes in temperature can be investigated under increasing radiative
forcing.

To further investigate the geographical features of temperature changes, we divide the contiguous China
domain into five subregions which are in accordance with the Third China’s National Assessment Report on
Climate Change (Wang & Zheng, 2012). As shown in Figure 1, five subregions are Northwest China, North-
central China, Tibet, Northeast China, and South China. For each subregion, we calculate the area-averaged
temperature change and obtain the differences in the mean and extreme temperature of all five subre-
gions. The temperature indices can be divided into two main categories, namely low- and high-temperature
indices. As the objective of this study is to investigate the combination effects of temperature and humidity.
The combination effects are effective when high temperature is compounded by humidity. Therefore, five
high-temperature indices are used in this study and have been described in detail in Table 1 (Frich et al.,
2002). To assess the skills of model simulations of the historical climate, observational data are needed as
references to compare with the model results. The observed mean, maximum, and minimum temperatures
are from the Climate Research Unit (CRU) monthly gridded data set with a spatial resolution of 0.5∘ × 0.5∘.
The CRU data set is based on the interpolation from monthly observations at meteorological stations across
the world’s land areas and covers a period of more than 50 years (Harris et al., 2014). It applies enhancement
of quality control algorithm to develop the global climate variables products highly resolved in time and
space. As CRU is a monthly observational data set, it cannot be used to calculate the temperature indices.
Daily maximum and minimum temperature data from Chinese National Meteoritical Center are adopted to
derive the five selected indices to validate the dynamically downscaled simulation (as shown in Figure 2).
Data from 202 stations is selected from 726 stations for analysis after passing the spatial and temporal con-
sistency test (Feng et al., 2004).
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Table 1.
Definitions of Extreme Temperature Indices Used in This Study

Labels Name Index definition Units

SU Summer days per period The counted number of days where the daily maximum
temperature great than 25∘C

1

TR Tropical nights index per
period

The counted number of days where the daily minimum
temperature great than 20∘C

1

TN90p Percentage of days when
TN> 90th percentile

The percentage of time where daily minimum temperature is
great than the 90th percentile of daily minimum temperature for
the reference period

%

TX90p Percentage of days when
TX> 90th percentile

The percentage of time where daily maximum temperature is
great than the 90th percentile of daily maximum temperature for
the reference period

%

HWFI Warm spell days Annual count of days with at least 6 consecutive days when the
daily maximum temperature is great than 90th percentile

1

3. Simulations of Historical Temperature and Humidity

Figure 3 shows the spatial distribution of annual mean, maximum, and minimum temperature over China
derived from HadGEM2-ES, PRECIS, and CRU for the period from 1976 to 2005. The figure of CRU shows
that annual mean temperature is relatively low over Tibet, increasing southeastward and reaching the
maximum in South China. The annual maximum and minimum temperatures also exhibit similar spatial
distribution. Comparing to CRU, HadGEM2-ES simulates the annual mean temperature in a similar spatial
pattern, the temperature increasing southeastward. However, the simulated temperature is higher than the
observations’ over Tibetan Plateau and Northeast China. There is an overestimation of annual maximum
temperature and an underestimation of annual minimum temperature over the whole China except South
China. The nonuniform between simulated temperature and observation is a common occurrence in
many other GCMs with a coarse resolution (Cheng et al., 2017; Flato et al., 2013; Zhou et al., 2013). PRECIS
significantly eliminates its occurrences and reproduces better spatial patterns for annual mean, maximum,
and minimum temperatures. PRECIS captures the warm observational center locating in South China and
Northwest China, and the cold center in Tibetan Plateau for both days and nights.

To gauge the skills of HadGEM2-ES and PRECIS in reproducing the annual mean, maximum, and minimum
temperatures, the Taylor Diagram is introduced to summarize how closely the patterns from two models’
results match the observation (Taylor, 2001). It exhibits the correlation coefficient (COR), standard deviation
(SD), and root-mean-square error (RMSE) between simulated patterns and the observational pattern in a
graphical way. The simulated pattern with the right amplitude of its variations (represented by SD), high
correlation, and low RMSE agrees well with the observation. On the plot, the pattern will have a closer dis-
tance to the reference point marked “OBS” on the x-axis. Figure 4 shows the relative merits of HadGEM2-ES
and PRECIS with respect to reproducing the spatial patterns of annual mean, maximum and minimum tem-
perature for China and its five subregions. All results from PRECIS have CORs greater than 0.95, and SDs
between 0.9 and 1.1 for China, while results from HadGEM2-ES have smaller CORs and wider spread SDs
between 0.8 and 1.2 than PRECIS. It indicates that PRECIS has a relatively high skill of reproducing the spa-
tial distribution of mean temperature over China for both days and nights. As for the five subregions, the
performance of PRECIS outweighs HadGEM2-ES in every subregion, but PRECIS shows an inconsistent per-
formance level in the different subregion. Results of PRECIS have the lowest CORs and highest RMSEs over
Northwest China compared with the results of other four regions. The relatively poor performance of PRE-
CIS over this subregion could be caused by its driving GCM since HadGEM2-ES, here, simulates the highest
RMSE and SD among all five subregions. Simulated patterns of PRECIS over South China agree best with
the observation as their points have the shortest distances to the reference point in the plot. The relatively
high skill of PRECIS in simulating spatial patterns may relate to the inputs of its driving GCM because the
performance of HadGEM2-ES over South China is also the best among all five subregions. Overall, it is evi-
dent that PRECIS outperforms HadGEM2-ES, and the performance of HadGEM2-ES affects the skill of PRECIS
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Figure 2. Spatial distribution of selected stations for analysis in China.

in respect of simulating the spatial dis-
tributions of annual mean, maximum
and minimum temperature for China
and five subregions.

Figure 5 demonstrates the annual
cycles of temperature estimated
from two models’ outputs and the
observational data for China and five
subregions. For China, the curve of
PRECIS well matches the annual cycle
of CRU for annual mean, maximum.
and minimum temperatures. Though
HadGEM2-ES does capture the trends
of the observed annual cycle, it holis-
tically overestimates around 1.7∘C for
the annual mean temperature and
about 2.1∘C for the annual maximum
temperature, and underestimates

2.3∘C for the annual minimum temperature. In northern subregions (Central North, Northwest, and North-
east China), HadGEM2-ES tends to overestimate the annual mean, maximum, and minimum temperature
in June, July, and August, namely the temperature in summer, and underestimate the temperature as large
as 6∘C in winter (December, January, and February). Annual cycles of PRECIS are also above the curves of
observation in summer for all three temperature indices. As for other three seasons, the results of PRECIS,
however, better agree with CRU than results of its driving GCM. In South China, both models’ values
generally stick together and are closer to the observation’s except that the annual cycle of HadGEM2-ES
is about 1∘C under the observation of the annual minimum temperature. In Tibet, results of HadGEM2-ES
exhibit overestimation for both the annual mean and maximum temperature, and underestimation for
the annual minimum temperature. The curve of HadGEM2-ES is about 5∘C above the observation for
the annual maximum temperature, and is about 3∘C below the reference curve for the annual minimum
temperature. As for the results of PRECIS, they only have some underestimations in winter and spring for
the annual mean temperature. Other than that, they match with the observation better than HadGEM2-ES
for all three indices. Based on the results above, PRECIS is more reliable than HadGEM2-ES to represent the
annual cycles for China and all five subregions.

In Figure 6, simulated indices of temperature extremes (SU, TR, TN90, and TX90) from HadGEM2-ES and PRE-
CIS are validated with indices derived from the observational data from selected stations for the baseline
period. Per definition, the indices (TN90p, TX90p, and HWFI) are calculated by referring to the 90th per-
centile of the daily maximum and minimum temperature for the baseline period. Therefore, it is necessary
to validate these thresholds for extreme temperature indices with the observation data set. For each chart,
it takes into account of the daily temperature data of every grid cell in the selected region for the analysis.
Each column represents the mean value of the selected index calculated from all grids’ temperature in a
sub-region for 30 years. For China, values of PRECIS match with the values of the observation in respect to
the four selected extreme indices. HadGEM2-ES, on the other side, underestimates all indices. For all five
subregions, both models can capture the geographical differences for most indices. For example, PRECIS
can eliminate these unrealistic occurrences and gives the highest or lowest values in the right subregions
for all indices. Therefore, it is unequivocal that PRECIS, with finer scale physical process simulation, can bet-
ter depict the distributions of extreme temperature events than HadGEM2-ES simulation does for China. It
is further proved that high-resolution simulation is essential to obtain the plausible distribution of temper-
ature over China. A faithful reproduction of historical climate is the premise for projecting a plausible range
of future climate.

To validate the skill of the PRECIS model in simulating the historical RH, we used the monthly vapor pressure
data from CRU and converted the vapor pressure to RH. The RH was computed from the observed vapor
pressure (e) and temperature as follows. First, the saturation vapor pressure (es) at a temperature (T) was
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Figure 3. Spatial distributions of mean (TMP), maximum (TMX) and minimum (TMN) temperature (∘C) over China from HadGEM2-ES (a, d, and g), PRECIS (b, e, and h), and
observations (CRU) (c, f, and i) for 1976–2005.

measured by the conversion equation from the Goff–Gratch vapor pressure formula (Goff & Gratch, 1946;
List, 2000; Murray, 1967). This formula is valid for temperatures between−45 and 60∘C. The RH was obtained
by dividing the saturation vapor pressure by the observed vapor pressure.

es (T) = 6.112e17.62T∕(243.12+T)

RH = 100 ×
(

e
es

)

After converting the observed vapor pressure to RH, each model’s output was validated with the observa-
tion data set regarding the annual mean RH. As shown in Figure 7, the observation shows that the annual
mean RH is relative low in northwest China, increasing southeastward. Comparing to CRU, HadGEM2-ES
overestimates the RH all over the nation and simulates an artificial high RH area over Tarim Basin in north-
west China. The PRECIS model successfully eliminates this overestimation and faithfully reproduces the high
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Figure 4. Comparison of model simulations of mean (TMP), maximum (TMX) and minimum (TMN) temperature over China and five
subregions in Taylor diagrams for 1976–2005. (a) China, (b) Centralnorth, (c) northeast, (d) northwest, (e) South, (f ) Tibet
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Figure 5. Annual cycle of mean (TMP), maximum (TMX) and minimum (TMN) temperature (∘C) over China (a–c) and its five subregions (d–r) during 1976–2005.
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Figure 6. Regional averages for indices of annual mean temperature extreme (SU, day; TR, day; TN90, ∘C; TX90, ∘C; HWFI, day) over China
for HadGEM2-ES, PRECIS, and observations from 1976 to 2005.

humidity center in the southwest China. PRECIS captures the warm observational center locating in South
China and Northwest China, and the cold center in Tibetan Plateau for both days and nights. In addition,
the PRECIS model simulates more reliable spatial distributions and closer magnitude of RH in China.

In the Introduction section, we mentioned that the PRECIS model with a closure of the convection scheme
based on moisture convergence can better simulate the relationship between extreme subdaily precip-
itation and surface temperature in China than its driving GCM. GCMs predict an exponentially increase
in extreme precipitation intensity with temperature increasing in the absence of moisture limitation.
Observations suggest that there is a negative scaling of extreme precipitation with high temperatures.
Our previous study found that the PRECIS model simulated a peak structure in the curve relating daily
precipitation extremes with local temperatures. The curve increases at a rate determined by the C-C
relationship at the low-medium range of temperature variations but decreases at high temperatures. The
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a b c

Figure 7. Spatial distributions of mean relative humidity (%) over China from HadGEM2-ES (a), PRECIS (b), and observations (CRU) (c) for 1976–2005.

strong reduction in modeled precipitation intensity with high temperatures is associated with a deficit in
humidity (atmospheric moisture content), but this relationship is yet to be understood. Relations between
temperature and humidity are difficult to assess because of an ambiguity of causes and effects, in particular
over moisture-limited regions and the summer season (Trenberth & Shea, 2005). Most important is the
dependency of both temperature and humidity on the atmospheric circulation conditions (Lenderink &
van Meijgaard, 2009). The PRECIS model employs a closure of the convection scheme based on moisture
convergence (Wilson et al., 2015). This closure led to a strong positive feedback with soil drying leading to
a reduction in precipitation, opposing the results of HadGEM2-ES that gave rise to a negative soil moisture
feedback. Despite the fact that extreme precipitation intensities over China are overestimated by PRECIS,
it still produces more realistic relationship between temperature and RH, which is well reflected in the
diagram (Figure 8). Therefore, the results exhibit a reference for PRECIS adding values to its driving GCM by
capturing the relationship between temperature and RH in the land surface.

4. Projections of Future Temperature and Humidity

Figure 9 shows the projected temperature changes relative to the baseline period for PRECIS under RCP4.5
and RCP8.5 scenarios for the period 2036–2065 (2050s) and the period 2070–2099 (2080s). Under RCP4.5,
PRECIS projects general increases in the annual mean, maximum, and minimum temperatures over the
whole China for both periods. It also can be found that the positive temperature changes are increasing
in the mean temperature of days and nights from the 2050s to the 2080s. For both periods, there is no
big difference between the mean minimum temperature and mean maximum temperature in terms of the
warming magnitude. But the model tends to simulate warming spread to larger areas in the mean minimum
temperature than those in the mean maximum temperature. PRECIS simulates that the northern subre-
gions (Northwest China, Northcentral China, Northeast China, and Tibet) slightly warm more than southern
subregion (South China) does. Under RCP8.5, PRECIS also projects warming across the landmass of China,
while the warming degree is larger than the degree under RCP4.5 for each period. Especially in the 2080s,
the warming in days’ and nights’ temperature became more significant with the increasing in the radiative
forcing. It is also noted that contrast between the warming in mean maximum temperature and the mini-
mum temperature is greater under RCP8.5 than RCP4.5 in the 2080s. Moreover, the warming in the northern
subregions is higher than in the southern subregions concerning warming magnitude for both days’ and
nights’ temperature in the 2080s. With the big difference between these areas, warming centers with signif-
icant temperature changes can be detected. At the late of the 21st century, there are two warming centers
with changes greater than 6∘C that can be detected in the mean maximum temperature namely, the north-
ern parts of Northwest China and Northeast China. As for the mean minimum temperature, the areas with
changes more than 6∘C are all over the northern subregions, and only one warming center with changes
>9∘C can be found.

Figure 10 demonstrates the area averages of temperature changes for China and its five subregions. For
both mean maximum and minimum temperatures, all China and its five subregions have positive changes
under both RCPs for two future periods. Besides, four northern subregions have larger mean temperature
changes than the one southern subregion. For Northwest, Central North, and Northwest China, the main
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HadGEM2-ES

PRECIS

Observations

Figure 8. Dependencies of extreme percentiles (90th) of the distribution of daily
precipitation on temperature in three data sets (HadGEM2-ES, PRECIS, and
Observations).

reason why they have higher warm-
ing rate than the South China is
that their relatively high latitudes
make them receive more positive
albedo-temperature feedback. As for
Tibet, melting of the ice and snow
cover in the high-elevation areas under
warming climate increases water vapor
which traps more heat in the surface,
and makes the surface less reflective
and adds to the warming effect (Wang
et al., 2015a, 2015b). It is also apparent
that warming in the mean temperature
of nights is greater than the mean tem-
perature of days (from 0.3 to 1.5∘C).
This warming trend agrees with the
conclusion drew from Figure 7 that

warming in the minimum temperature contributes more to the warming in the annual temperature than
the maximum temperature does. It had been found that the greenhouse effect would be more effective
and impedes radiation from escaping into space (Gong et al., 2014). Therefore, the minimum temperature
would rise faster than the maximum temperature, and the difference between them (diurnal temperature)
will be amplified with more greenhouse gas emission (Li et al., 2011). In detail, the annual mean tem-
perature of China will increase 2.3∘C in the 2050s and 3.4∘C in the 2080s under RCP4.5, and 2.9∘C in the
2050s and 5.7∘C in the 2080s under RCP8.5. Among all five subregions, Northwest is expecting the largest
warming for both the annual maximum and minimum temperature under both scenarios in both two
future periods. In the 2080s, the increment of minimum temperature can reach 7.0∘C under RCP8.5. The
second largest warming will take place in Tibet and Northeast with increases both close to the temperature
of Northwest regarding the annual mean maximum and minimum temperatures. South China will have
the smallest warming for both days and nights’ temperature under two different scenarios in both periods
(1.9∘C in the 2050s and 3.1∘C in the 2080s under RCP4.5; 2.4∘C in the 2050s and 5.0∘C in the 2080s under
RCP8.5 with respect to the annual mean temperature).

Figure 11 shows the projected changes relative to the reference period in the indices of temperature
extremes over China under RCP4.5 and RCP8.5 for two future periods. Results for Summer Days have the
maximum change takes place in the southern of South China, and the minimum change is in Tibet. Under
stabilized radiative forcing scenario, the index’s changes in the 2050s are relatively consistent with the
changes in the 2080s. But the spatial distribution of the index shows noticeable changes between two
periods under high concentration scenario. For a given future period, all five subregions will have more
summer days than the reference period with the radiative forcing increases from RCP4.5 to RCP8.5. But
the areas with maximum and minimum changes remain the same through the whole time. The pattern of
Tropical Nights is consistent with that of Summer Days in terms of geographical differences in the index
changes. The only difference is that the magnitude of index changes in Tropical Nights is smaller than that
in Summer Days. TN90p presents the percentage of time where a daily minimum temperature in a time
series is less than the 90th percentile of daily minimum temperature for the baseline period. Figure 11
show that the most significant increases in TN90p appear in the southern part of South China subregion.
At the late 21st century, the increase can go up to 60% percentage under the high emission scenario.
TX90p is defined as the percentage of time where a daily maximum temperature in a time series is less
than the 90th percentile of daily maximum temperature for the baseline period. TX90p has the similar
spatial distributions of the increases to TN90p with larger increases in southern subregion than in northern
subregions, but the magnitude of increases is smaller for every scenario (only 46% under RCP8.5 in the
2080s). The geographical features of HWFI (Warm spell duration index: annual count of days with at least
six consecutive days when daily maximum temperature>90th percentile of daily maximum temperature
for the baseline period) have positive changes over China under any RCP for any period. The increase in
HWFI is amplified by the increase in radiative forcing.
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Figure 9. Spatial distributions of percentage changes for two future periods (2036–2065 relative to 1976–2005 and 2070–2099 relative to 1976–2005) of mean (TMP; a, d, g, j),
maximum (TMX; b, e, h, k) and minimum (TMN; c, f, i, l) temperature (∘C) as projected by PRECIS.

Regional statistics for projected indices of temperature extremes under RCP4.5 and RCP8.5 for two future
periods are displayed in Figure 12. All the projected regional hot extreme events have the same geophysical
distribution compared to the histogram for baseline period. From RCP4.5 to 8.5, both SU and TR are increas-
ing with the radiative forcing increasing. Therefore, the whole nation will have hotter extreme events under
RCP8.5 than RCP4.5. Moreover, the magnitudes of increase are relatively small between two RCPS in the
2050s when both RCPs have no significant difference in the radiative forcing. When comes to the 2080s, the
magnitude of changes between two RCPs is larger than the 2050s. Despite the spatial distribution of the
extreme events, what concerned mostly is the future changes of them relative to the baseline period. From
Figure 12, we can see all values in SU and TR are positive. Therefore, China will have more summer days and
tropical nights in the future. Regionally, South China has the largest increases in SU and TR. In opposite,
Tibetan Plateau has the smallest increase in SU and TR. TN90p and TX90p have all values above 10% which
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Figure 10. Future percentage changes (2036–2065 relative to 1976–2005 and 2070–2099 relative to 1976–2005) of mean (TMP),
maximum (TMX) and minimum (TMN) temperature (∘C) for PRECIS over China (a) and its five subregions (b–f ) under RCP4.5 and RCP8.5.

mean the extremely high temperature above the 90th percentile of daily minimum and maximum temper-
ature in the baseline period have more frequency to happen in the future. It is noted that TN90p’s values
out weight TX90p’s. Future nights have more frequency of extremely high temperature than future days.
Coinciding with the beforementioned two indices, China will experience more frequency of extremely high
temperature with the radiative forcing increase. Additionally, the degree of changes in frequencies can also
be amplified by increasing the radiative forcing. For instance, the increases in frequencies of TN90p under
RCP8.5 are greater than the increases under RCP4.5 in the 2080s. The projected warm spell duration index
follows the patterns derived from the baseline period concerning spatial distribution. Same to other indices,
HWFI has positive changes under no matter which scenarios. With the radiative forcing increased, China will
have a longer duration for the warm spell. For five subregions, South China have the largest change in HWFI
and Northeast has the smallest.
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Figure 11. Spatial distributions of projected indices of high-temperature extremes (SU, day; TR, day; TN90p, %; TX90p, %; HWFI, day) over China under RCP4.5 and RCP8.5 for two
future periods (2036–2065 and 2070–2099).

With global warming in the future, China is likely to experience more number of extremely hot days, more
frequent high-temperature extremes, and longer duration of warm spell than the baseline period. We can
conclude it from investigating the five high-temperature indices that the frequency of high-temperature
extremes can be changed up to 40% and the duration can be changed up to 150% in China by the
increased radiative forcing in the end of 21st century. Regionally, South China has the largest increases in
all indices of high-temperature extreme and the smallest changes in the mean, maximum, and minimum
temperatures. This implicates that the future climate in South China will be changing more violent than the
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Figure 12. Regional averages for indices of annual mean high-temperature extremes (SU, day; TR, day; TN90p, %; TX90p, %; HWFI, day)
over China and its five subregions for two future periods (2036–2065 and 2070–2099).

reference period. South China is expecting more high-temperature extreme events in summer and more
low-temperature extreme events in winter.

As shown in Figure 13, the distribution of future RH generally follows the spatial pattern in the reference
period, which is relative low value in northwest China and increasing southeastward. Comparing to temper-
atures, RH is less affected by the changes in radiative forcing. Despite some differences in details, RH remains
same and does not have any notable changes in the magnitude. To investigate into the magnitude, the pro-
jected change in the future RH was displayed in Figure 14 under the RCPs scenario for two periods relative to
the baseline period. Under the both scenarios, PRECIS projects that RH will increase over northwest, north-
central, and southwest China. Especially, PRECIS tends to enhance the increasing conditions over these three
subregions with radiative forcing increasing for both periods. As for the areas with decreasing RH marked as
red in the maps, they are two river basins, Amur River basin in northeast China and Yangtze basin in South
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Figure 13. Spatial distributions of percentage changes for two future periods (2036–2065 relative to 1976–2005 and 2070–2099
relative to 1976–2005) of mean relative humidity (unit: %) as projected by PRECIS. (a) RCP4.5 2050s, (b) RCP4.5 2080s, (c) RCP4.5 2080s,
(d) RCP8.5 2080s.

China. Similarly, PRECIS tends to enhance the decreasing trend over both basins with increases in radia-
tive forcing for both future periods. This may be related to the Asian monsoon changed by climate change,
because climate over both basins is controlled by the Asian monsoon. From Zou et al.’s study, enhanced
warming under climate change reduces the thermal contrast between the Asian land mass and neighbor-
ing oceans. Monsoon-affected areas will experience a weak monsoon, which prevents warm-humid air from
oceans (Zou et al., 2016). Despite all the changes in China, the maximum magnitude of changes is only 8%
from the RH in the baseline period. The changes in RH are not as obvious as temperatures under climate
change. Therefore, we can conclude that RH is not as sensitive as temperatures are to the increases in the
radiative forcing.

Dew point temperature is chosen to demonstrate how the combination effects of temperature and RH will
change under climate change, because it is defined as the temperature to which air must be cooled (at
constant water vapor content and constant pressure) to reach saturation. The dew point temperature (td)
was computed from the RH (rh) and temperature (T) by the conversion equation from the Magnus–Tetens
Approximation (Lawrence, 2005). This approximation provides a maximum error of 0.1% for temperatures
between −45∘C and 60∘C, and RH between 1% and 100%.

td =
B ×

[
ln
(

rh

100

)
+ A×T

B+T

]

A − ln
(

rh

100

)
− A×T

B+T

A = 17.625

B = 243.04
∘

C

ZHU ET AL. PROJECT COMBINED TEMPERATURES AND HUMIDITY 1151



Earth’s Future 10.1002/2017EF000678

a b

c d

Figure 14. Future percentage changes (2036–2065 relative to 1976–2005 and 2070–2099 relative to 1976–2005) of mean relative
humidity (%) for PRECIS over China under RCP4.5 (a, b) and RCP8.5 (c, d).

As the measurement of dew pint related to humidity, a higher dew point temperature means a temperature
comes with more moisture. In the Introduction section, we discussed that high humidity in the atmosphere
will retarded the perspiration process. The discomfort of human bodies increases with the unevaporated
perspiration. Studies found that most inhabited areas will consider the dew point of 21∘C as the threshold
for discomfort and 7–20∘C as the comfortable interval (Robinson, 2000). In Figure 15, dew points above the
threshold of 21∘C are marked with red and dew points between 7 and 20∘C are marked with yellow. Yel-
low color covers the most parts of South China and only the southern island (Hainan Province) is covered
by the red for the baseline period. With the radiative forcing increasing from RCP4.5 to 8.5, the area cov-
ered with yellow shrinks from the southern part of South China where has been taken over by the red color
for both future periods. By the end of the 21st century, the red spreads to the most parts of Guangdong
Province, southern parts of Guangxi and Taiwan Provinces under RCP8.5. But the northern boundary of the
yellow area remains unchanged under RCPs through the whole time. Compared to the reference period,
the changes in the dew point temperature over the South China are 1.3∘C under RCP 4.5 in the 2050s, 2.4∘C
under RCP4.5 in the 2080s, 1.9∘C under RCP8.5 in the 2050s, and 4.1∘C under RCP8.5 in the 2080s. Consid-
ering the area averaged dew point temperature over South China is 11∘C for the period from 1976 to 2005,
the combination effects of high-temperatures and RH are substantially smaller than generally anticipated
for China (Fischer & Knutti, 2013). The reason behind this finding is that the model that projects greater
warming does not show a correlated strong increase in the RH.

5. Conclusions

In this study, the PRECIS model is employed to investigate the temperature extremes and RH response
to climate change at a national level with consideration of the interconnection among climate variables.
In detail, we investigated the projected temperature extremes, RH and dew point temperatures for China
under different scenarios for two future periods. We first examined the selected RCM’s skill in reproducing
the historical climate over China for the baseline period. A reasonable reproduction of historical climate
was obtained through the validation with the observation data set in terms of the temperatures, humid-
ity and the relationship between them. After the validation, a plausible range of future temperatures and
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Figure 15. Spatial distributions of projected dew point temperatures (∘C) over China under RCP4.5 and RCP8.5 for two future periods
(2036–2065 and 2070–2099). (a) Baseline, (ba) RCP4.5 2050s, (c) RCP4.5 2080s, (d) RCP4.5 2080s, and (e) RCP8.5 2080s

RH were generated under RCPs to build the foundation for investigating how the joint projections of high
temperatures and RH response to climate change at a fine spatial resolution.

The PRECIS model projects the annual mean temperature of China will increase up to 6∘C under high radia-
tive forcing scenario at the end of 21st century. Opposite to the significantly change in the temperature,
the maximum magnitude of changes in RH is only 8% from the value in the baseline period. The dew point
temperature, which is chosen to demonstrate how the combination effects of high temperature and RH, is
projected to increase 4.1∘C over South China (the concerning area with high temperature compounded by
high humidity) under RCP8.5 in the 2080s. As the area-averaged dew point temperature over South China
is 11∘C for the period from 1976 to 2005, the future dew point temperature is still within the comfortable
interval even under the worst scenario. Therefore, the combination effects of high temperatures and RH are
substantially smaller than generally anticipated for China. This is because that the model does not project
the increase in RH as great as the increase in temperatures. Even though the impact-relevant metric like
the dew point temperature is not projected as bad as the generally anticipated, China is still expected to
have more number of extremely hot days, more frequent high-temperature extremes, and longer duration
of warm spell than before. By investigating the five high-temperature indices, we found that the frequency
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of high-temperature extremes can be changed up to 40% and the duration can be changed up to 150% in
China by the increased radiative forcing in the end of 21st century. Regionally, extra cautions need to be
given to South China, as it has the smallest changes in the mean, maximum and minimum temperatures
while the largest increases in all five high-temperature indices. Consequently, the climate over South China
for two future periods will be changing more drastically than the baseline period. South China is expecting
more high-temperature extreme events in summer and more low-temperature extreme events in winter.
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