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Abstract Due to climate change, rising temperature around the world will have a great potential to
influence the global hydrologic cycle, thus leading to substantial changes in the spatial and temporal
patterns of precipitation. In this study, the effects of global warming on the regional hydrologic cycle,
particularly on the spatiotemporal patterns of precipitation, over China are investigated through a
high-resolution regional climate ensemble. In detail, the PRECIS regional climate modeling system is
employed to simulate the regional climate over China from 1950 to 2099 with a fine resolution of 25 km,
driven by the boundary conditions from a four-member HadCM3-based perturbed-physics ensemble (i.e.,
HadCM3Q0, Q1, Q7, and Q13) and the ECHAM5 model. Historical simulations of the PRECIS ensemble are
first compared to the observations to validate its performance in capturing both the spatial and temporal
patterns of precipitation. The comparisons show that the PRECIS ensemble is likely to overestimate pre-
cipitation in the south and exhibits slight dry biases in the northwest and southeast coasts of China. The
projections from the PRECIS ensemble for future periods (i.e., 2020s, 2050s, and 2080s) are then analyzed
to help understand how the regional characteristics of precipitation will be affected in the context of
global warming. It is shown that the annual mean precipitation over China is likely to increase throughout
the 21st century (i.e., by 0.078 mm/d in 2020s, 0.218 mm/d in 2050s, and 0.360 mm/d in 2080s). This may
suggest that the rising temperature due to climate change will intensify the regional hydrologic cycles in
China. However, apparent spatial and temporal variations are also reported in the projected precipitations
from the PRECIS ensemble. For example, bigger changes in precipitation are usually observed in summer;
projected precipitation changes in the southeast are apparently higher than other regions. In addition,
the results show that the fluctuation range of the ensemble simulations will increase with time periods
from 2020s to 2080s, indicating that the longer the projecting periods, the more uncertain the projections
will be.

1. Introduction

Global warming resulting from increasing greenhouse gases is a common challenge facing humankind.
Impacts from climate change, such as constant heat waves and droughts [Meehl et al., 2009; Trenberth
and Fasullo, 2012], extreme precipitation and flooding [Lu and Ran, 2011; Min et al., 2011], destruction of
the nature ecosystems [Hughes et al., 2000; Root et al., 2003], and human health [Baker-Austin et al., 2013].
Among these risks, the uneven distribution of interannual and annual precipitation in different regions
could lead to drought or flood damage to varying degrees. Thus, it is necessary to assess the potential
impacts of global warming on precipitation to develop adaptation and mitigation measures against climate
change.

Physically based global climate models (GCMs) provide a useful overview of possible climate scenarios, but
they do not capture local details and forcings at coarse resolution, nor do they resolve climate features at
the mesoscale and regional scales [Wetterhall et al., 2006; Yu et al., 2014]. Exploring the projected climatolog-
ically changes at a higher spatial and temporal resolution through regional climate models (RCMs) is likely
to compensate for the deficiencies with GCMs. In general, there are two common RCM downscaling tech-
niques, statistical and dynamical downscaling. Statistical downscaling applies the quantitative relationships
between large-scale coarse atmospheric variables (predictors) and local weather variables (predictands) to
obtain finer outcomes, even reaching the site scales. Owing to their easy conduction and low computational
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expense, statistical downscaling is a widely used climate research method [Gagnon et al., 2005; Liu and Fan,
2013; Wang et al., 2013; Zhang and Yan, 2015]. However, a disadvantage to this techniques, is the solution is
built on a number of widely known assumptions on the underlying probabilistic model, parameter stability,
as well as temporal dependence which are not always satisfied in the context of climate change [Wang et al.,
2014a]. In other words, the established math-statistics mapping between predictors and predictands may
not meet future situation by virtue of relying too much on present day climate factors. By contrast, dynam-
ical downscaling nests fine-resolution RCMs into GCMs to better reflect local or regional details. Besides,
RCMs also have similar physical processes and mechanisms as described in GCMs, so the results simulated by
dynamical downscaling techniques are closer to reality. Given their benefits, dynamical downscaling tech-
niques are popular for climate simulations and projections [En-Tao et al., 2010; Carvalho et al., 2011; Wang
et al., 2014a, 2014b, 2015; Wang et al., 2016].

Complex topography and unique climate systems heighten the impacts of climate change in China, where
many areas have suffered or are experiencing more than their share of natural disasters. For example, a flood
in 1998 submerged homes and took the lives of many, costing $30 billion US [Jiang et al., 2008; Yu et al.,
2009]. In contrast, millions of people experienced severe water shortages during an extended drought in
south Yunnan province from 2009 to 2010, which resulted in considerable economic losses and threats to
the Chinese economy [Jiang et al., 2008; Qiu, 2010]. It is complicated and challenging to study the problem
of climate change in China and many researchers have focused their analysis on climate form and change
mechanisms, such as the East Asian monsoon [Yu et al., 2014], Arctic sea ice [Li, 1996], Pacific decadal oscil-
lation [Shen et al., 2006], and ENSO [Zhang et al., 2014]. However, the explanative force of these studies need
more credible proofs, because climate changes are hybrid and complicated. An assessment of the potential
impacts of global warming and a reliable prediction of future climate change in precipitation in the context
of China are needed, and then targeted public policies and measures for adaptation and mitigation against
the changing climate could be particularly important [Adger et al., 2005; Wang et al., 2014b]. Previous stud-
ies on precipitation in China have shortcomings or defects, such as a limited region, low resolution, short
period of time and more uncertainty. To improve upon previous studies, we investigate the influences of
global warming on precipitation in China using a high regional model system (PRECIS) and driven by an
ensemble of five different boundary conditions. First, the model’s performance is validated by a comparing
observation data obtained from 1961 to 1990. Then future changes in the spatial and temporal patterns of
precipitation across the country are analyzed to understand the regional impacts of human-induced global
warming in China.

2. Methods and Data

2.1. Regional Climate Modeling

Developed by the Met Office Hadley Centre, PRECIS is an atmosphere and land surface regional model
system. PRECIS can run at two different horizontal resolutions: 0.44∘ × 0.44∘ (∼50 km) and 0.22∘ × 0.22∘

(∼25 km) at the equator of the rotated regular latitude–longitude grid. It contains 19 levels in a vertical
hybrid-coordinate system to build the complex upper atmospheric system. To resolve the initialization
problem, a relaxation method is applied to drive the regional model over a lateral buffer zone of eight grid
cells, where the main variables such as atmospheric pressure, wind, temperature, and humidity, comprise
initial lateral boundary conditions (LBCs) [Jones et al., 2004]. In addition, to capture all possible ranges
of projection we use a member ensemble of LBCs, including some from a HadCM3-based perturbed
physics ensemble (called QUMP, denoted by HadCM3Q0-16), and one from ECHAM5 which is generated
from the Max Plank Institute’s fifth generation coupled ocean–atmosphere general circulation model (see
http://www-pcmdi.llnl.gov/ipcc/model_documentation/ECHAM5_MPI-OM.htm) under the IPCC SRES A1B
emissions scenario.

There are 17 members for the QUMP ensemble, all of which can be applied to drive PRECIS to generate a
set of high-resolution regional climate simulations. The difference among QUMP members is their sensi-
tivity against global climate change. In this study, considering the computational cost while exploring the
spread of uncertainties as much as possible, we selected Q0 (unperturbed), Q1, Q7, and Q13 (perturbed)
as the model’s lateral boundary data to drive PRECIS. On the other hand, the land surface scheme of PRE-
CIS employs Met Office Surface Exchange Scheme 2.2 (MOSES 2.2), which can supply surface boundary
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Figure 1. PRECIS model domains. There are five regions selected for validating across different climatic regions of China, which are
Northeast China (NE), North-central China (NC), Southeast China (SE), West China (W), and Northwest China (NW), respectively.

Table 1. Coordinates of China Regions

No. Region Longitude Latitude

1 China 66.24∘E–139.48∘E 10.07∘N–54.34∘N

2 Northeast China 117.54∘N–130.17∘E 40.65∘N–52.29∘N

3 North-central China 104.40∘E–121.34∘E 34.92∘N–40.06∘N

4 Southeast China 105.68∘E–21.14∘E 22.82∘N–33.98∘N

5 West China 78.48∘E–101.16∘E 30.58∘N–34.84∘N

6 Northwest China 75.40∘E–96.39∘E 37.20∘N–42.22∘N

conditions, such as sea-surface temperatures (SSTs), information about the extent and thickness of sea ice,
and the temperature of the bottom soil layer [Kong et al., 2011].

2.2. Experimental Design

The PRECIS ensemble simulations for the whole of China are carried out in a continuous run from 1949 to
2099 at a spatial resolution of 25 km, and then the time series are divided into two periods for the baseline
(1961–1990) and the future (2021–2099). For the choice of study domain size, some regional selection prin-
ciples are followed [Centella-Artola et al., 2014] to configure a relatively reasonable domain extending from
about 66.24∘E–139.48∘E to 10.07∘N–54.34∘N, which is over 38,000 25-km grid points in total. In addition,
considering the internal regional features of precipitation in China and based on some previous studies [Luo
et al., 2013; Yu et al., 2014], we select and add up to five appropriate typical samples of climatic regimes (i.e.,
cold, warm, wet, dry, and plateau climate) across China for the validation and undermentioned probabilistic
analysis. The entire region of China and other climatic subregions are illustrated in Figure 1 and coordinates
are provided in Table 1. The five subregions, which represent five distinct climate types, are the Northeast,
North, Southeast, West, and Northwest of China, respectively. In addition, the simulated data from the buffer
zone of eight grids and the spin-up period are removed before analysis.

2.3. Observation and Validation Methods

In this study, a gridded observational meteorological data set, derived from the Asian Precipitation-Highly-
Resolved Observational Data Integration Toward Evaluation of Water Resources project in Japan (hereinafter
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Figure 2. Comparison of (a) observed and (b–f ) the simulated annual mean precipitation for China. The observations were averaged
over the baseline period (1961–1990) and remapped to the same grids to compare as well as the simulations.

referred to as APHRO), is used to validate the model’s ability to capture the annual and seasonal precip-
itation patterns. The current collection contains state-of-the-art daily gridded near-surface meteorology
data (mainly precipitation and temperature) with high-resolution grids over Asia. The dataset source comes
mainly from rain-gauge observation records covering a period of more than 50 years with high spatial and
time resolution. Here we extract the daily gridded precipitation data subset with 0.25∘ daily resolution from
1961 to 1990 for the monsoon Asia domain (60∘E–150∘E, 15∘N–55∘N) as the comparison (see http://www
.chikyu.ac.jp/precip/). In addition, in order to facilitate the comparison between observations and model
simulations, we have regridded the simulated results to the grid cells from observational datasets.

Furthermore, to quantify the comparisons between observation and simulation, the root mean square error
(RMSE) and Pearson sample linear cross-correlation coefficient (PLCC) are used to validate the model’s per-
formance, which are defined as follows:

RMSE =

√√√√ n∑
i=1

(
Yi − Xi

)2

n
, (1)
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∑(
X − X

)(
Y − Y

)

N

(√
(1∕n)
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(
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)2
)(√

(1∕n)
n∑
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(
Yi − Y

)2
) , (2)

where Xi and Yi represent the observed and simulated values for each cell grid, X and Y represent the mean
value of observation and simulation. The two methods are used to quantify and analyze the performance
of PRECIS from errors and correlation, respectively.

3. Results

3.1. Model Validation

To examine the performance of the five RCMs using PRECIS for the baseline period (1961–1990) over China,
the simulations are compared with observations from annual, seasonal, and monthly precipitation in spatial
and temporal scales for five subregions (i.e., NE, N, SE, W, and NW) and different seasons (i.e., DJF, MAM, JJA,
and SON).
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Figure 3. Comparison of (a) observed and (b–f ) the simulated mean precipitation for China during DJF. The observations were
averaged over the baseline period (1961–1990) and remapped to the same grids to compare as well as the simulations.

Figures 2–6 show average annual and seasonal precipitation geographic distributions in the baseline
period, respectively for APHRO, Q0, Q1, Q7, Q13, and ECHAM5. Overall, the spatial patterns of precipitation
suggest the models have the ability to realistically reproduce precipitation across most regions of China,
although it is slightly wetter when the latitude decreases particularly in the southwest of China. In terms of
both annual and seasonal comparison, the main rainfall belt of China is captured well: average precipita-
tion increases from northwest to southeast over China, but a little bit overestimated precipitation over the
south region. The dry center is located in the northwest, such as southern Xinjiang, with the annual mean
precipitation less than 50 mm, while the wet center has a mean precipitation range in the southeast from
8 to 9 mm/d with the maximum precipitation in Hainan Island and Taiwan.

The precipitation simulations compare well with observations in most regions (bias of −0.5 to 0.5 mm/d).
The bias of simulated average precipitation is relatively larger in the central southern China (wet bias of
3–4 mm/d) and smaller in the northwest and along Fujian-Guangdong hilly areas (dry bias of 0.5–1 mm/d)
especially in spring. Five models present inconsistencies in the simulation of summer precipitation on the
southeast coasts of China, for example, Q7, Q13, and ECHAM5 models show drier outcomes than others in
the same regions (dry bias of 1.5 mm/d). In addition, there is a larger wet bias in winter over the southeast,
while dry bias is observed in autumn in the same region.

Furthermore, among the five RCMs, QUMP ensemble models (particularly Q7) present drier biases in east
China compared to ECHAM5 in summer and autumn. In spite of this, the higher sensitivity models (i.e.,
Q13, and ECHAM5) tend to match the magnitude of the observed winter precipitation more closely than
the other three lower sensitivity models (i.e., Q0, Q1, and Q7) in the whole of China. This shows a great
disagreement with others studies in which low sensitivity models have stable simulated quality (Buontempo
et al. 2014).

Finally, it is noted that the simulated magnitudes of precipitation tended to significantly overestimate the
observations over the Qinghai Lake and western edge of the Tibetan Plateau. The major causes for the
wetter result lie in many factors. On the one hand, as the largest inland lake in China, Qinghai Lake has its
own precipitation effect and is of little relevance to perimeter climate change [Buontempo et al., 2014]. In
addition, general climate models including PRECIS have no specific lake analysis modules or are missing
some necessary boundary conditions to drive special local meteorological factors [Williams et al., 2015].
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Figure 4. Comparison of (a) observed and (b–f ) the simulated mean precipitation for China during MAM. The observations were
averaged over the baseline period (1961–1990) and remapped to the same grids to compare as well as the simulations.

Figure 5. Comparison of (a) observed and (b–f ) the simulated mean precipitation for China during JJA. The observations were averaged
over the baseline period (1961–1990) and remapped to the same grids to compare as well as the simulations.
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Figure 6. Comparison of (a) observed and (b–f ) the simulated mean precipitation for China during SON. The observations were
averaged over the baseline period (1961–1990) and remapped to the same grids to compare as well as the simulations.

Also, owing to the lack of statistical data in these remote regions, such as the plateau mountain areas, large
uncertainties in climate models are unavoidable.

Figure 7 shows the comparison of the annual precipitation cycles between observations and the ensemble
simulations, which are depicted by box plots (minimum, first quartile, median, third quartile, and maxi-
mum value, respectively) and averaged over the whole of China and the five divided subregions as show
in Figure 1. The green line represents the mean value of five simulations and the blue line for observation.
From these figures, it is generally agreed that precipitation exhibits prominent seasonal characteristics over
China, for example, more precipitation in summer and less in winter whether simulations or observation,
however overestimation is obvious in simulations, especially in the first half of a year. All models show less
wet bias in north China (Figure 7c), where observation is within the range of simulations throughout the
year, indicating that PRECIS could reasonably capture observed precipitation in that region’s annual cycle.
While the bias is relatively large in west especially during the rainy seasons (Figure 7e) and perhaps it also
does not address the available LBC data in this region. In addition, the heaviest rainfall occurs in April instead
of traditionally in summer across southeast and northwest China.

To further quantitatively analyze the model’s ability in simulating the precipitation variability, we calculated
the RMSE and PLCC between APHRO observation and the corresponding model simulations for annual and
seasonal precipitation during the baseline period over China and the subregions (Figures 8 and 9).

The RMSE values are relatively small during autumn and winter for the whole of China, while errors are
higher in the other two seasons, particularly in summer. The PLCC values of different seasons and regions
are held at around 0.7, which are fairly perfect results compared with other studies [Liu et al., 2013; Luo et al.,
2013]. For the subregions, the RMSE of the northwest is about 0.4 mm/d with a minimum of 0.319 mm/d
of Q0 and the largest error occurs in the southeast (over 2.5 mm/d). The highest correlation is found in the
northwest area with PLCC values around 0.8 during summer. The results suggest that the greater errors in
wet regions may be attributed to a higher precipitation magnitude than arid regions [Luo et al., 2013].

Generally speaking, the PRECIS ensemble performs well in capturing the spatial distribution and annual
cycle of precipitation over China, although there are wet biases in the southernmost regions and slight dry
biases in the northwest and southeast coasts of China in autumn. Moreover, PRECIS presents high spatial
correlation in simulation against observation and small errors in autumn and winter, which also indicate it
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Figure 7. Annual cycles of mean precipitation (mm/d) for (a) China and (b–f ) subregions during the baseline period (1961–1990). Boxes
indicate the interquartile model spread (25th and 75th quantiles) with the horizontal line indicating the ensemble median and the
whiskers showing the extreme range of ensemble.

can reasonably simulate the precipitation in China from another point of view. Taking into consideration of
the biases, the variations of atmospheric circulation and moisture transport among models could be one
reason for the question [Yu et al., 2014].

3.2. Future Precipitation Projections
3.2.1. Changes in Spatial Distribution

To better analyze future precipitation trends, we divided the data into three continuous 30-year periods
of the 21st century: 2011–2040 (2020s), 2041–2070 (2050s), and 2071–2099 (2080s). Figures 10–12
show the projected distributions of seasonal precipitation changes during the three periods through-
out the whole of China from the five PRECIS simulations (Q0, Q1, Q7, Q13, and ECHAM5, respectively).
Additionally, we also calculate each average precipitation variation for the different models in annual and
seasonal scales to quantitatively describe the changes of the five subregions with the same future periods
(Table 2).

Regardless of how seasons change, there is an obvious general increase in precipitation over most areas
of China in the future, and all models show a similar trend in each season’s spatial patterns with slight
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(a) (b)

(c) (d)

(e) (f)

Figure 8. The root mean square error (RMSE) between observation and the ensemble for annual and seasonal precipitation over the
entire China and subregions.

(a) (b)

(c) (d)

(e) (f)

Figure 9. The Pearson sample linear cross-correlation coefficient (PLCC) between observation and the ensemble for annual and
seasonal precipitation over the entire China and subregions.

differences in certain local areas. Specifically, in winter during the initial period, an increase in precipitation
is found in parts of north China but reductions from 0.2 to 0.6 mm/d dominate the southeast, especially in
the performance of Q0 and Q1. The pattern of rainfall increases is similar in the middle and end of the cen-
tury, but has a much larger range, particularly in the southeast. It is worth noting that the QUMP ensemble
is not shown in accordance with projection from ECHAM5. For example, the amount of precipitation in the
south of Himalayas simulated by the QUMP ensemble is larger compared with the latter.
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Figure 10. Projected patterns of precipitation changes (mm/d) for DJF over China in future. Each row represents an RCM member and
from top to bottom these are Q0, Q1, Q7, Q13, and ECHAM5. Each column represents a period. From left to right these are 2020s, 2050s,
and 2080s.
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Figure 11. Projected patterns of precipitation changes (mm/d) for MAM over China in future. Each row represents an RCM member and
from top to bottom these are Q0, Q1, Q7, Q13, and ECHAM5. Each column represents a period. From left to right these are 2020s, 2050s,
and 2080s.
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Figure 12. Projected patterns of precipitation changes (mm/d) for JJA over China in future. Each row represents an RCM member and
from top to bottom these are Q0, Q1, Q7, Q13, and ECHAM5. Each column represents a period. From left to right these are 2020s, 2050s,
and 2080s.
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The pattern of precipitation changes in spring in the 2020s shows a similar distribution to that in winter.
However, precipitation is likely to have a reducing intention over the northeast, Sichuan Basin, and southern
Tibet. In the middle of the century, the trend seems to move eastward to broader areas, such as Jiangsu and
Zhejiang in Q1 and Q7. But even negative changes, it appears that the whole of China would receive more
precipitation in the long run till the end of the century. In summer, it is clear that there is a decreased precip-
itation belt along the northeast to southwest and the highest decrease center is located in the Chongqing
and Hubei sections in the 2020s. Afterward, precipitation begins to increase gradually, especially in the
south with changes from 0.367 mm/d in 2050s to 0.653 mm/d in the 2080s. In addition, the QUMP ensem-
ble and ECHAM5 model have different opinions on future precipitation changes in the north. For example,
there are obvious increasing trends with time in the four QUMP models, which is opposite to the ECHAM5
(decrease∼ 0.22 mm/d in 2080s relative to the baseline period). Unlike the first three seasons, Figure 13
shows the distinct probability distributions for the next three periods in autumn, in which the variation
range of precipitation is relatively smaller. Furthermore, the rainfall in many areas even shows a declining
trend in the 2020s, which is obvious across the southeast (a particular decrease of∼0.2 mm/d). Nevertheless,
the overall change trend in precipitation is evidently positive from the beginning to the middle century.

Figure 14 show maps projecting minimum, maximum, and average annual precipitation of all grid cells
over China in the next three periods. The results clearly show that the future wet centers are located in the
southeast and southern Tibet and the dry center appears in the northwest with little changes relative to
the baseline period. The outcomes of averaged annual precipitation in different period also present future
precipitation will be increasing over time, especially in the southeast (i.e., 6–7 mm/d). By comparing the
minimum and maximum map of each period, there is a wider gap between them over southeast China
and northwest Tibet, indicating that most significant uncertainties are likely to exist in these regions. As
mentioned earlier, the reasons for this lie in many aspects and one may be due to the intrinsic limitations
of boundary data in RCMs, which cannot fairly reflect local or regional climatic characterizations.

In summary, the annual mean precipitation in China is projected to remain on an overall growth trend in
the long term, most likely averaging at the rate about 0.15 mm/d per period, even though some regions or
seasons show a slightly decreased trend in the early years of this century (i.e., decreasing 0.209 mm over
the southeast during autumn). The changes in magnitude of precipitation are larger in summer and smaller
in winter and autumn, which means China will be in a wetter scenario during the traditional rainy seasons.
In addition, despite similar signs for all seasons in China, QUMP models project general wetter conditions
compared with the ECHAM5.

The annual cycles of mean precipitation changes in three future periods for China and five subregions are
shown in Figure 15. In order to further explore the uncertainties involved in the probabilistic projections
of precipitation, we plot the five models together to form a variation trend band, whose width indicates
the spread of precipitation change. In the future, the precipitation presents obvious spatial and temporal
variations and characteristics. The amplitude of precipitation changes is more in wetter regions (i.e., south-
east) and warmer months (i.e., May–August). Specifically, the changes of monthly mean precipitation show
mixed signs, with a maximum increase as high as 1.6 mm/d and a minimum decrease of about −0.8 mm/d
in other months (i.e., May and September), as compared to the simulated baseline over China. Similarly, the
performances of the five predefined areas are not in complete accord with future precipitation. For example,
the precipitation variation trend is projected to exceed 1.0 mm/d in June in the northeast, but is followed by
a sharp drop below ∼−1.2 mm/d in August, while in September it is likely to be positive again (∼0.8 mm/d).
The northern projected tendency is to fluctuate between positive and negative, peaking in July (∼2.0 mm/d,
but delayed with time) and the minimum in June (∼−2.0 mm/d). In addition, although the total rainfall is
increasing in the beginning of this century over the southeast, there are some uncertainties or ambiguities
for the trend in the middle of this century, when rainfall is likely to decrease in May and winter months but
tends to increase in other months. In the far western region and the dry northwest of China, the extent of
variation in precipitation is relatively small, owing to the essential shortage of water in these areas. However,
the future trend in the west exhibits a pronounced discrepancy from July to September in the 2050s.

Generally speaking, the results suggest that the projected range for precipitation is apparently wider in the
2050s and 2080s as compared to the initial period of 2020s, which shows that there are large disagreements
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Figure 13. Projected patterns of precipitation changes (mm/d) for SON over China in future. Each row represents an RCM member and
from top to bottom these are Q0, Q1, Q7, Q13, and ECHAM5. Each column represents a period. From left to right these are 2020s, 2050s,
and 2080s.
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Figure 14. Projected patterns of annual precipitation changes (mm/d) over China in future. Each row represents the minimum,
maximum, and average projection for all grids respectively. Each column represents a period. From left to right these are 2020s, 2050s,
and 2080s.

among the models for mid-and-long term projections. Likewise, in each period the same holds true for rainy
seasons (i.e., from June to September) compared with dry seasons.

4. Conclusions

In this study, we conducted a long continuous simulation (1949–2100) of precipitation over China through
the PRECIS regional climate modeling system with a 25-km horizontal resolution. To evaluate the model’s
performance for historical simulation and investigate future probable ranges of precipitation, a set of lateral
boundary conditions, including four QUMP members from a HadCM3-based perturbed-physics ensemble
and the ECHAM5 model, are employed to drive the PRECIS model for generating high-resolution ensemble
projections of precipitation over China.

Overall, the performance of PRECIS is reasonable in the simulation of spatial precipitation distribution when
compared with corresponding observations from the APHRODITE project dataset in the baseline period
(1961–1990). In detail, the well performance of PRECIS is demonstrated by high spatial pattern correlations
with observations and small RMSE values. Nevertheless, wet or dry biases still exist in some local regions.
For example, the PRECIS ensemble is likely to overestimate precipitation in the south and tends to present
slightly dry biases in the northwest and southeast coasts of China, especially in the first half a year in the
annual cycle. Additionally, relatively large biases appear in the west and the rainy seasons (i.e., from May
to September), implying that geographical location and sufficient water vapor supply may play vital roles
in the precipitation simulations. The possible reason for the large uncertainties in the northwest and west
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Figure 15. Annual cycles of mean precipitation changes over the whole China and five subregions. The columns from left to right
represent the period 2020s (green band), 2050s (yellow band), and 2080s (red band), respectively. The rows represent different regions,
namely, (a–c) for China, (d–f ) for NE, (g–i) for N, (j–l) for SE, (m–o) for W, and (p–r) for NW. The black solid line is average value for the
ensemble.

might be deficiencies of GCM boundary conditions in reflecting these mountainous or isolated regions,
along with inevitable observational errors.

Future changes in precipitation over China as predicted by PRECIS for three successive 30-year periods
(i.e., 2020s, 2050s, and 2080s) in the 21st century are further analyzed in this study. It is shown that annual
mean precipitation over China is likely to increase throughout the 21st century (i.e., by 0.078 mm/d in 2020s,
0.218 mm/d in 2050s, and 0.360 mm/d in 2080s), although some model results present a slightly decreased
trend for certain regions (i.e., southeast) or seasons (i.e., autumn) in the early years of this century. Apparent
spatial and temporal variations are also reported in the projected precipitations from the PRECIS ensem-
ble. For example, bigger changes in precipitation are usually observed in summer; projected precipitation
changes in the southeast are apparently higher than other regions. By analyzing the precipitation changes
in the annual cycle, the fluctuation range of the ensemble simulations will increase with time periods from
2020s to 2080s, indicating that the longer the projecting periods, the more uncertain the projections will be.
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