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A B S T R A C T

China has experienced frequent extreme precipitation events (i.e., floods and droughts) in recent years, which
have resulted in significant economic losses and irrevocable damages to human societies and natural ecosystems.
How to adapt to the forthcoming and long-term changes in precipitation extremes has become the top priority of
decision makers and resources managers for developing resilient communities and sustainable agroecosystems.
This essentially replies on a better understanding of possible changes in the spatiotemporal characteristics of
precipitation extremes from both short-term and long-term perspectives. To this end, future changes in pre-
cipitation extremes across China in response to global warming are investigated in this study through a regional
climate ensemble modeling approach. Specifically, in order to reflect spatiotemporal variations and uncertainties
in model physics, a perturbed-physics global climate model ensemble is used to drive the PRECIS regional
climate modeling system to generate 25-km climate projections throughout the 21st century for the entire
country of China. The validation results for the ensemble simulations over the historical period show that the
PRECIS model performs reasonably well in reproducing the spatial patterns of observed precipitation extremes in
most regions of China. The future projections of precipitation extremes suggest that there is very likely to be a
continuously-increasing trend in the analyzed precipitation extreme indices (except for a slight decreasing trend
in CDD). Particularly, higher rates of increase in these indices are expected to occur from the forthcoming
decades to the middle of this century. The results also indicate apparent spatial variations in the projected
changes of precipitation extremes. In general, absolute changes in northern regions are relatively small com-
pared to the significant changes in southeastern regions, suggesting that more severe floods might be expected in
the southeast while slight increases in precipitation in the north (especially the northwest) would lead to a relief
to the droughts. However, the percentage changes are larger in north than south. Moreover, it is reported that
the frequency and intensity of heavy rains across the country are projected to increase, implying that more
frequent urban flooding would become a major challenge for developing resilient and sustainable communities
in China. The changes in thermal (i.e., temperature) and dynamical (i.e., circulations) factors could be some
physical reasons for the increase of intensity and frequency in future precipitation.

1. Introduction

Precipitation is a critical component for the hydrological cycle of
earth. Global warming resulted from increased greenhouse gases in the
atmosphere can cause large increase in atmospheric water vapor con-
tent and lead to changes of precipitation. The Intergovernmental Panel
on Climate Change (IPCC) Fifth Assessment Report (AR5) indicates that
precipitation has likely increased since 1901 over the midlatitude land

areas of the Northern Hemisphere (Stocker et al., 2013). Changes in
precipitation not only reflect in total or mean state, but also in ex-
tremes. Most importantly, variations and trends in extreme climate
events are important and more sensitive to climate change than the
mean values (Li et al., 2012), because the associated devastating con-
sequences may have huge impacts on human society (Wang et al.,
2008).

As a continental country with high vulnerability to climate change
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and relatively low adaptive capacity, China has experienced extreme
climate events and resulted in serious damage, for example, the flood of
Yangtze River in 1998 (Yin and Li, 2001), freezing rain in southern
China in January 2008, torrential rain and landslide in Zhouqu County
of Northwest China in 2010 (Wang et al., 2012), continuous severe
droughts in most parts of southern Yunnan from 2009 to 2010 (Lü et al.,
2012; Qiu, 2010). These natural disasters caused hundreds of millions
economic losses, large numbers of casualties and widespread displace-
ment. To better adapt to the changing climate, the public and policy
makers now urgently demand availability of reliable, long-term, and
relatively high-resolution precipitation extremes information con-
cerning future changes for developing appropriate adaptation and mi-
tigation measures.

Nowadays, researchers have taken a great deal of effort to study
precipitation extremes over China in different ways. For example, many
studies are concentrated on history evaluation based on observed site
datasets (Zhang et al., 2006; Fan et al., 2016). However, owing to un-
even station coverage and missing values, using these data cannot re-
flect the reality of the entire region, especially in the remote areas or
complex terrains. Another common way is that the simulated results
from global coupled ocean-atmosphere circulation models (GCMs) are
used to estimate the trends and variability of precipitation extremes in
different emission scenarios (Zhang et al., 2006). Still, as the spatial
scale of precipitation events is usually smaller than the grid sizes used
by GCMs, their capabilities in projecting credible geographical dis-
tributions of future climate are often in question (Feng et al., 2011).
Thus, climate model need a higher resolution for a better description of

complex topography and better reproduction of small-scale atmo-
spheric dynamics (Bell et al., 2004).

Sharing similar physical processes and mechanisms, fine-resolution
regional climate models (RCMs) nested into GCMs through dynamical
downscaling technologies can solve above problem well (Guo et al.,
2017; Wang et al., 2012, 2016a). The outputs downscaled by RCMs
with finer-scale surface forcing can produce more local or regional
detail information and the results could be more credible. In this paper,
we apply a dynamical downscaling modeling system (PRECIS) for cli-
mate simulations and projections over China.

The interpretation of the extreme events is not easy, because there is
no single precipitation threshold indicator to represent the intensity
and frequency of extremes competently. The Joint World
Meteorological Organization Commission for Climatology and World
Climate Research Programme project on Climate Variability and
Predictability, more specifically the Expert Team on Climate Change
Detection, Monitoring and Indices (ETCCDI) defined a set of climate
change indices focusing on extremes that can be described from daily
temperature and precipitation across different parts of the world. These
indices have been widely used in detection, attribution, and projection
of changes in climate extremes (Guo et al., 2017; Wang et al., 2014a;
Zhou et al., 2014), in virtue of their abilities in reflecting the change of
extreme climate in different aspects with relatively weak extremes, low
noise and strong significances (Wang et al., 2013).

In this paper, we choose ten core precipitation extreme indices de-
fined by the ETCCDI to portrait the characteristics of extreme pre-
cipitation. As shown in Table S1 (see supplementary materials), these

Fig. 1. Study domain. Hatched lines denote buffer zone area which is composed of 8 grids along the longitude and latitude.
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Fig. 2. Taylor diagrams of 10 indices between observation and 6 models over China. Various colors of dot represent different indices. Each dot represents a model,
identified by its number on the top left. For the models located between the two blue lines, correlations are between 0.6 and 0.9. (For interpretation of the references
to color in this figure legend, the reader is referred to the Web version of this article.)
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indices are classified by five categories: (1) Extremal indices, including
maximum 1-day precipitation (Rx1day) and maximum 5-day pre-
cipitation (Rx5day); (2) Percentile threshold indices, including very wet
day precipitation (R95pTOT) and extremely wet day precipitation
(R99pTOT); (3) Absolute threshold indices, including number of heavy
precipitation days (R10mm) and number of very heavy precipitation
days (R20mm); (4) Spell duration indices, including consecutive dry
days (CDD) and consecutive wet days (CWD); and (5) Other indices,
including annual total wet-day precipitation (PRCPTOT) and simple
daily intensity index (SDII). In addition, the first and second categories
are regarded as the intensity of extremes and the third and the fourth
represent the frequency of extremes.

As an improvement to aforementioned studies, we use the PRECIS
regional climate modeling system at its highest spatial resolution
(25km) to investigate the possible changes in precipitation extremes
over China in response to global warming. The performance of the
model is evaluated relative to an observation data set. The future
changes in the spatial and temporal patterns of precipitation extremes
across the country are analyzed afterwards.

2. Data and methods

2.1. Regional climate modeling

As a regional climate modeling system, the Providing Regional
Climates for Impacts Studies (PRECIS) developed by the Met Office
Hadley Center has been widely used to simulate climate change,

because of its easy-to-use, wide suitability and flexibility (Buontempo
et al., 2014; Wang et al., 2015a, 2016b). PRECIS has 50-km (0.44°) and
25-km (0.22°) resolutions at the equator of the rotated regular latitude-
longitude grid and contains 19 levels in the vertical. The GCM data used
to drive PRECIS is provided by the Hadley Center's global atmospheric-
only model HadAM3P with a horizontal resolution of 3.75° longitude
and 2.5° latitude to generate the regional model's lateral boundary
conditions (LBCs). As a well encapsulated and visualized model system,
the PRECIS has its unique configuration and physical parameterization
schemes. For the physical parameterization schemes, the PRECIS uses a
mass flux penetrative convective scheme (Gregory and Rowntree,
1990), including the direct impact of vertical convection on momentum
(in addition to heat and moisture) (Gregory et al., 1997). The radiation
scheme includes the seasonal and diurnal cycles of insolation, com-
puting short wave and long wave fluxes. A first order turbulent mixing
scheme is used to vertically mix the conserved thermodynamic vari-
ables and momentum (Smith, 1990). The land surface scheme is em-
ployed HadRM3P-MOSES 2.2 (Essery et al., 2001; Noguer et al., 2004).
In addition, our PRECIS simulation was a continuous run from 1950 to
2099 at its implicit maximum resolution of 25 km. That means all in-
itialization work requiring for the model to spin up and reach a stable
status was carried out in the beginning years from 1950. In RCM si-
mulations, the spin-up period is usually set to 1–2 years. Here we re-
moved the simulations between 1950 and 1959 (10 years) in our ana-
lysis. Apparently, after these 10-year simulations, the model would
certainly be able to reach a stable status. Hence, all simulations after
1960 until 2099 can be used to analyze the regional climatology for our
study area.

In the climate modeling and climate change predictions, there are
kinds of uncertainties, such as emission scenarios, physical feedbacks,
the carbon cycle, boundary and initial conditions (Chen and Sun,
2015). These uncertainties influence our understanding towards cli-
mate change, thus none of the existed models is robust or accurate
enough to guarantee the accuracy in simulation or projection, owing to
different numerical implementations of climate physics. Although these
uncertainties are inevitable, we can capture, quantify and further re-
duce them by employing multi-model ensemble to some extent
(Buontempo et al., 2014; Murphy et al., 2009; Noguer et al., 2004;
Wang et al., 2015b). The multi-model ensemble collects different GCM

Fig. 3. Model skill scores of IVS for the 10 indices over China. The smaller IVS values, the greater the model's skill.

Fig. 4. The portrait diagram for the rank of each index, including correlation (left), spatial standardized deviation ratio (center), and root-mean square difference
(right). Colors as marked in the label bar indicate a model's rank for each item. (For interpretation of the references to color in this figure legend, the reader is referred
to the Web version of this article.)

Table 1
Weights and ranks of 6 models according to the Taylor diagram and their inter-
annual variability skill (IVS) over China.

Model Rank of Taylor Rank of IVS Sum of the ranks Weights

Q0 4 6 10 0.082
Q1 3 3 6 0.137
Q7 6 4 10 0.082
Q10 1 1 2 0.411
Q13 2 2 4 0.205
ECHAM5 5 5 10 0.082
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output into a central repository (i.e., CMIP3 and CMIP5) to allow inter-
model comparisons and analysis (Pepler et al., 2015). Although the
uncertainty range of model can be explored by this way, the disagree-
ments between models (or external uncertainties) could be large at
regional scales owing to different structural choices among models.
PRECIS provides an alternative route, called “perturbed physics ap-
proach”, by varying the values of the parameters in a single model to
give the range of future outcomes (or internal uncertainties). Thus, the
perturbations can generate larger ensembles to explore nonlinearities
and extreme behavior (Collins et al., 2006; Guo et al., 2018). Specifi-
cally, the ensemble of perturbed physics LBCs in PRECIS is based on the
HadCM3 model of Met Office Hadley Center for quantifying uncertainty
in model projections (QUMP) under the IPCC SRES A1B emissions
scenario. The QUMP ensemble consists of 17 members (HadCM3Q0-
Q16) and each one has a set of perturbations to its unique dynamical
and physical formulation, representing different boundary conditions
and climate sensitivity (Mcsweeney et al., 2012; Wang et al., 2014b).
However, considering the calculation cost and the requirements while
exploring a wide range of uncertainties, we followed the suggestion
from Hadley Center and selected Q0, Q1, Q7, Q10 and Q13 from the
ensemble of QUMP as LBCs to run the PRECIS model. Selection of the
specific ensemble members is based on 1) their performances in simu-
lating key features of the climate over China, and 2) their ability to
sample the range of outcomes of future changes simulated by the full
17-member ensemble (Bellprat et al., 2012). PRECIS will run from 1950
to 2099 with a 25-km spatial resolution, and then the time series is

divided into four periods: the baseline period (1961–1990) for valida-
tion, the 2020s (2020–2040), 2050s (2041–2070) and 2080s
(2071–2099) for projection. In the baseline period, we regridded the
simulated results to a uniform resolution of 0.5° horizontal resolution to
facilitate the comparison between observations and model simulations.
The definitive China domain extends from about 66.24° E ∼139.48° E
and 10.07° N ∼54.34° N, and covers about 38000 25-km grid points in
total (Fig. 1). In addition to reflect the uncertainties associated with
different parametric settings, one from ECHAM5 model, generated from
the Max Plank Institute's fifth generation coupled ocean-atmosphere
general circulation model, will be used to analyze the inter-model un-
certainties compared with the HadCM3 downscaled by the PRECIS.

2.2. Validation methods

2.2.1. Observations
The daily precipitation observations are obtained from the gridded

climate dataset CN05.1, provided by the China Meteorological
Administration. Compared with other observations for China, this da-
taset is based on 2 416 national meteorological stations from 1961, and
interpolated onto spatial grids with 0.5°× 0.5° horizontal resolution
(Wu and Gao, 2013). It has been widely used in many studies of climate
change across China (Ji and Kang, 2015; Wu et al., 2017). Here, we
extract the data from 1961 to 1990 to represent the observations of
present-day climate in the context of China.

Fig. 5. Spatial comparisons (unit: mm) between simulation and observation over China for the Rx1day and Rx5day during the baseline period (1961–1990). The
simulated values are the average of six simulations ensemble (Q0, Q1, Q7, Q10, Q13 and ECHAM5).
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2.2.2. Spatial distribution
The Taylor diagram is used to test the overall performance of

PRECIS in reproducing the spatial pattern of the current extreme pre-
cipitation. From the Taylor diagram, we can identify the spatial cor-
relation coefficient, the centered pattern root-mean-square difference
and the ratio of standard deviations between RCM ensemble and ob-
servation. Specifically, the spatial correlation coefficient is used to
quantify the degree of phase agreement of two datasets. The centered
pattern root-mean-square difference is used to measure the degree of
agreement in amplitude. Normalized by the corresponding observation,
if the spatial correlation and ratio of standard deviations are close to 1
and the centered pattern root-mean-square difference is close to 0, it
means a good simulation (Jiang et al., 2015; Taylor, 2001).

2.2.3. Temporal variation
We apply a method called inter-annual variability skill score (IVS)

to estimate the skill of PRECIS in reproducing temporal variation (Jiang
et al., 2015), defined as follows:
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where STDmand STDo represent the inter-annual standard deviation of
model simulations and observations respectively. Smaller IVS values
indicate a better agreement between the simulations and observations.

2.2.4. Weight calculation
In order to comprehensively evaluate multi-model ensemble, the

typical solution is to use arithmetical averaging or equal weight aver-
aging method. Currently, many studies have applied this method for the
evaluation in multi-GCMs (Chen, 2013; Chen and Frauenfeld, 2014).
Nevertheless, due to the lack of individual model evaluation, equal
weight among models means a high (or inferior) skillful model can be
underestimated (or overestimated). In this paper, we will follow the
methods mentioned by Jiang et al. (2015) and Wang et al. (2016b) to
improve traditional arithmetical average. Firstly, according to Taylor
diagram and IVS, ensemble models are ranked for each precipitation
extreme index. Owing to three assessment indices in Taylor diagram, a
comprehensive rating index MR is used to get an overall ranking, which
is described as:
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Where m is the number of models, and n is the number of indices. The
rank of the best-performing model is 1; the worst model is 6 for its rank.
Therefore, the closer to 1 the value of MR is the higher the skill of the
simulation. Secondly, we calculate the weight of each model using a
function of its ranking position among others:
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Fig. 6. Spatial comparisons (unit: mm) between simulation and observation over China for the R95pTOT and R99pTOT during the baseline period (1961–1990). The
simulated values are the average of six simulations ensemble (Q0, Q1, Q7, Q10, Q13 and ECHAM5).
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WhereSiis the rank of model i; nis the total number of models; Rican be
considered the combined performance indicator for an individual
model; Wi is the weight of model i and it can be considered the nor-
malized value of Ri.

2.3. Trend analyses

Trends for annual changes in future are estimated using the Mann-
Kendall (MK) test. As a non-parametric statistically evaluation, MK test
is often used in trend analysis on extremes, which does not assume that
data are normally distributed and robustly responds to the effects of
outliers in the series (Hamed and Rao, 1998; Wei et al., 2017). Ad-
ditionally, the magnitude of trends will be calculated by the Theil-Sen
trend estimation method, which can be more accurate than simple
linear regression for statistics of skewed distribution (Fonseca et al.,
2016).

3. Results

3.1. Model validation

To implement a quantitative evaluation of the performance of the
six simulations in representing China's current climatologically features

for ten precipitation extreme indices, we will examine their climato-
logical spatial pattern and inter-annual variability, respectively.

3.1.1. Evaluation for spatial variation
Fig. 2 shows the Taylor diagram of the six runs against observation.

For four intensity indices (Fig. 2a, c), including Rx1day, Rx5day,
R95pTOT and R99pTOT, most models have high spatial correlation
coefficients (0.7–0.9) and low centered pattern root-mean-square dif-
ferences (1.0–1.5) with observation. In contrast, the spatial correlation
coefficients of four frequency indices (R10mm, R20mm, CWD and CDD)
are smaller than previous intensity indices (Fig. 2b, d), particularly for
CDD with a decrease below 0.6. For CWD, the centered pattern root-
mean-square difference exceeds 2.0 and the ratio of standard deviations
is about 2.5, suggesting simulated amplitude of biases and variation are
relative larger than observation. SDII shows the best performance among
all extreme indices, with the spatial correlation coefficient of 0.85, the
centered pattern root-mean-square difference of below 1.0 and the ratio
of standard deviation between 1.0 and 1.5 (Fig. 2e). In addition, much
larger uncertainty in frequency extremes indices than other indices are
observed because of the loosely scattered distribution in the Taylor
diagram, especially for consecutive dry and wet days, implying models
differ widely in their simulation ability to reproduce the spatial varia-
tions for these indices. In other words, there is a large uncertainty among
models when simulating the spatial pattern of frequency extremes in-
dices in China. However, in summary, PRECIS has a reasonable perfor-
mance in simulating the spatial distribution for most indices.

Fig. 7. Spatial comparisons (unit: days) between simulation and observation over China for the CDD and CWD during the baseline period (1961–1990). The
simulated values are the average of six simulations ensemble (Q0, Q1, Q7, Q10, Q13 and ECHAM5).
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3.1.2. Evaluation for inter-annual variability
As presented in Fig. 3, we apply the IVS skill score to quantify the ability

of PRECIS in inter-annual variability between the ensemble models and
observation. The performance for frequency indices is better than intensity
indices in inter-annual variability, especially for CDD and R10mm. This is
quite different from the Taylor diagram. For example, relative to poor
performance in spatial variation for CDD, the IVS value is close to 0, and the
value ranged from 0.5 to 0.8 for R10mm. Correspondingly, two intensity
indices (Rx1day and R99pTOT) have the highest IVS values. Take R99pTOT
for example, the IVS value is more than 1.8 for ECHAN5 model. Never-
theless, the overall IVS values simulated by PRECIS are less than some re-
sults from GCMs (Duan and Mei, 2014).

3.1.3. Calculation of rank and weight
Fig. 4 displays the ensemble models’ rankings in terms of the Taylor

diagram. Three evaluation indicators, including pattern correlation (left),
spatial standardized deviation ratio (center), and root-mean square differ-
ence (right), are shown for each extreme index. The better ranking is shown
in blue and the worse in red. Overall, the ranks of Q1, Q10 and Q13 are
better than Q0, Q7and ECHAM5. According to the Table 1, the ranks of six
simulations between Taylor diagram and IVS are similar, with a little dif-
ference in rank fourth and sixth. The results show the highest weight
(0.411) is obtained by Q10 because of its top rank, followed by Q13 (0.205),
Q1 (0.137), Q0 (0.082), Q7 (0.082), ECHAM5 (0.082).

3.1.4. Weighted validation in spatial distribution
The weighted annual average simulations using PRECIS ensemble

are compared with observation in spatial distributions from 1961 to
1990 (As shown Figs. 5–9). Overall, the simulated distributions of all
extreme indicators suggest that the PRECIS can reasonably reproduce
the extreme temperature patterns in most regions of China, although
there are some disagreements in some areas.

During the baseline period, the simulations for four precipitation
intensity indices, maximum 1-day precipitation (Rx1day), maximum 5-
day precipitation (Rx5day), very wet day precipitation (R95pTOT) and
extremely wet day precipitation (R99pTOT), show similar spatial pat-
terns with an increase from northwestern to southeastern China, though
there are different biases in some sub-regions (Fig. 5). The northwest
regions and southern edge show dry biases, particularly in the areas
along Fujian and Guangdong, while prominent wet biases are con-
ducted by RCMs in southwest regions (except for the east of Sichuan
Basin). For example, the Rx5day overestimates over 30mm in the south
tip of Tibet and west of Sichuan. Rx1day depicts similar patterns as
those of Rx5day, with a better performance over most regions of China.
The R99pTOT resembles closely the maximum 5-day precipitation,
implying that PRECIS could have some limitations in simulation on
heavier extremely precipitation (Fig. 6).

For the frequency of extreme precipitation (Fig. 7), the maximum
length of wet spell (CWD) is concentrated over the south and edge of
Plateau and the biases between weighted multi-model ensemble mean
and observation are maintained within in the range of [−10, 10] days

Fig. 8. Spatial comparisons (unit: days) between simulation and observation over China for the R10mm and R20mm during the baseline period (1961–1990). The
simulated values are the average of six simulations ensemble (Q0, Q1, Q7, Q10, Q13 and ECHAM5).
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for most regions of China. However, the maximum length of dry spell
index (CDD) simulated by PRECIS has distinct differences in Xinjiang,
where overestimation is in the north while underestimation is in the
southern regions (Fig. 7c).

On the other hand, PRECIS can well simulate their spatial patterns
of two fixed threshold-based indices, such as R10mm and R20mm
(Fig. 8), and the simulated very heavy precipitation days (R20mm) are
closer to the observed values than precipitation days (R10mm).
Nevertheless, the simulated results tend to be somewhat lower along
the southeast coast of China, while R10mm is overestimated in most
southwestern regions.

Fig. 9 shows the simulations of simple precipitation intensity index
(SDII) and annual total precipitation (PRCPTOT). Overall, SDII is
slightly overestimated in most regions of China (about 1mm/day) ex-
cept for the southern Guangdong and Hainan. Simulated annual total
precipitation exhibits apparent regional characteristics. There are large
wet biases in the Midwest of China, but dry biases in southeast coast
regions and the north of Xinjiang.

In general, PRECIS has the ability to reproduce ten precipitation extreme
indices in spatial distribution in most regions of China during the baseline
period, and shows better performance in eastern China. However, the si-
mulations are overestimated in some parts of south and underestimated in
the northwest and southern edge regions for most indices. The performance
of PRECIS for frequency indices is better than that for intensity indices in
inter-annual variability, especially for CDD and R10mm. But this is quite
different in spatial variation from the Taylor diagram.

3.2. Projection in changes

3.2.1. Changes in spatial distribution
The projected absolute changes in spatial distribution for four pre-

cipitation extreme intensity indices in future three periods are shown in
Fig. 10 for Rx1day and Rx5day, and Fig. 11 for R95pTOT and
R99pTOT. The relative changes are shown in Figs. S1 and S2. An overall
upward trend and greater extreme intensity in precipitation with time
are observed. Relative to the reference period, the changes in the end of
21st century are greater than that in the begin of this century. The
largest absolute changes occur in the southeast of China while weaker
increasing amplitude is located in the northwest. For example, the ab-
solute changes of Rx5day are projected to increase by 10mm in Hunan
but only by about 1mm in southern Xinjiang in the end of this century
(Fig. 10f). However, the relative changes exhibit an exactly inverse
distribution. For example, the largest percentage changes appear
mainly across southern Xinjiang and northern Qinghai while some
southeastern regions show little changes. Because the overall rainfall is
considerably scarce in arid and semi-arid regions, where little changes
in precipitation would make very much difference. While in the
southeast of China, there is rich rainfall so that the relative changes
seem less remarkable albeit with larger absolute changes. Overall, the
pattern of relative changes in Rx1day presents a general resemblance to
that in Rx5day (Fig. S1), while in northwest regions, the relative in-
crease in R95pTOT is larger than that in R99pTOT (Fig. S2).

For the R10mm and R20mm, we do not calculate the relative

Fig. 9. Spatial comparisons between simulation and observation over China for the PRCPTOT (unit: mm) and SDII (unit: mm/day) during the baseline period
(1961–1990). The simulated values are the average of six simulations ensemble (Q0, Q1, Q7, Q10, Q13 and ECHAM5).
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changes owing to the seldom occurrences for heavy rain in some certain
regions in the baseline period (i.e., Xinjiang). As shown in Fig. 12,
decreases of heavy rain days (R10mm) in southwest, southeast and
northeast are projected in the begin of this century. For example,
R10mm would reduce 3 days approximately. Nevertheless, the entire
region is projected to undergo consistent increase in R10mm and
R20mm from 2050s. In the end of 21st century, the changes in number
of heavy rain days are concentrated from Tibet to southern of China
(Fig. 12c) and the very heavy rain days mainly increase in the southeast
(Fig. 12f).

Fig. 13 and Figure S3 display the spatial changes of consecutive dry
days (CDD) and consecutive wet days (CWD), with apparent incon-
gruity compared with aforementioned indices. CDD is projected to de-
crease in most areas (except in southeast), for example, a decrease of
100 days or so occurs in the southern Xinjiang (Fig. 13a–c). In the other
hand, the projected changes in CWD are increased in most regions of
China (Fig. 13d–e) particularly in the eastern edge of the Tibetan Pla-
teau (exceeding about 100 days). However, slightly decrease trend
(about 10 days) is found in the southern end of Tibet and parts of
southwest. In the view of percentage changes (Fig. S3), CDD tends to
increase by 10% in southeast and CWD is inclined to increase by 50% in
the northwestern and northern Tibet. The increasing CWD and de-
creasing CDD in northern China, especially in the southern Xinjiang,
implying that there will be increasingly more wet days to alleviate re-
gional drought in the future.

Overall, the annual total precipitation (PRCPTOT) is projected to
increase continually in most regions of China in future, though decrease
(−100mm to−50mm) appearing across parts of Sichuan, Yunnan and
Fujian (Fig. 14a). The southern regions are expected to exhibit a larger
increase in PRCPTOT than the north, even by 400mm in the end of this
century (Fig. 14c). The spatial distribution of relative change in

PRCPTOT is generally similar to that in other indices, with larger values
in the northwest of China. Simple precipitation intensity index (SDII),
which is dependent on total annual precipitation and number of wet
days, tends to apparently increase almost throughout the whole of
China, particularly in the middle and end of 21st century, but slight
decrease occurs in some scattered areas in northwest, which is likely
due to the increase of local rain days (Figs. S4d–f).

3.2.2. Inter-annual changes
In the section, changes in precipitation extreme indices except the

heavy and very heavy precipitation days (R10mm and R20mm) are
expressed as percentage change relative to the reference period
1961–1990.

With respect to the baseline period, the trends of Rx1day and
Rx5day tend to be approximately in the same way in future, with an
increase by 2.44%/decade and 2.31%/decade, respectively
(Fig. 15a–b). The rate of increase is larger in the first two periods of
21st century, especially in the middle. Take Rx1day for example, pro-
jected increasing trend is 2.92%/decade in the early, 5.08%/decade in
the middle and 2.50%/decade in the end of 21st century, respectively.
For other two intensity indices, the tendency for R95pTOT is almost the
same as that for R99pTOT (Fig. 15c–d). Nevertheless, they show dif-
ferent growth rates in the middle of this century, with an increase of
6.00%/decade for R95pTOT and 8.34%/decade for R99pTOT. More-
over, R99pTOT presents much larger increasing magnitude, even ex-
ceeding 60% in some years.

Fig. 15e–h illustrates the temporal evolution of four frequency ex-
treme indices. An increase is projected in CWD, R10mm and R20mm
whereas decrease in CDD throughout 21st century. Specifically, CWD
would increase by 10% by the end of this century with a rate of 0.21%/
decade. On the contrary, CDD would decrease by about 9% and hold a

Fig. 10. Projected absolute changes (unit: mm) in spatial distribution for Rx1day and Rx5day. Columns from left to right are shown as 2020s, 2050s and 2080s,
respectively.
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Fig. 11. Projected absolute changes (unit: mm) in spatial distribution for R95pTOT and R99pTOT. Columns from left to right are shown as 2020s, 2050s and 2080s,
respectively.

Fig. 12. Projected absolute changes (unit: days) in spatial distribution for R95pTOT and R99pTOT. Columns from left to right are shown as 2020s, 2050s and 2080s,
respectively.
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rate of 4.34%/decade especially in the middle of this century. Two
indices of heavy precipitation days show consistent change, increasing
by 4 days for R10mm and 2 days for R20mm by the end of century. The
increase rate of R10mm (0.49%/decade) is projected to be slightly
larger than R20mm (0.26%/decade).

The projected percentage changes in PRCPTOT and SDII are seen in
Fig. 15i–j. The annual precipitation is likely to reach the peak in the
middle of century, increasing by about 25% with a rate of 2.95%/
decade, and from that, the trend begins to slightly decrease, with a rate
of −0.12%/decade. By the end of century, SDII would increase about
15% with a rate of 1.43%/decade.

4. Discussions

4.1. Contribution of extreme precipitation

Generally speaking, the increases or decreases in precipitation ex-
tremes will affect the increase or decrease in annual total precipitation
(Liu et al., 2013). Figs. S5–S6 show contribution rates of annual very
wet day precipitation to annual total precipitation, number of heavy
precipitation days to total wet days, respectively. The ratio to the en-
hancement of annual mean precipitation over China is about 50% in the
early this century to 52% in the end of this century for R95pTOT and
21%–23% for R99pTOT. A slightly increase in the proportion of heavy
rainfall to annual precipitation, with increasing trend at a rate of
0.14%/decade for R95pTOT and 0.12%/decade for R99pTOT. More-
over, the ratio between heavy rain days (R10mm and R20mm) and

annual total wet days increment has consistent long-term positive
trends, with a rate of 0.35%/decade for R10mm and 0.18%/decade for
R20mm. The ratio to total wet days of R10mm is 18% in the early to
21% in the end of this century, and 6%–8% for R20mm. In summary,
the ratio of heavy rainfall to total annual precipitation in both fre-
quency and intensity will increase throughout 21st century, implying it
may experience increasing floods over China in the future.

4.2. Potential physical attributions

Multiple interacting factors, including global warming, surface
cover change, human actives, urbanization and the low-level cu-
mulus cloud at regional scales, can affect the projection in future
precipitation extremes (Wang et al., 2013). However, the remark-
able warming temperature is the most important than the others.
Many studies have demonstrated that the precipitation in China is
highly sensitive to climate warming and the increasing temperature
trends to trigger the magnitude and frequency of precipitation in
China (Gu et al., 2017; Sun and Juan, 2013). According to the
Clausius-Clapeyron equation, the atmospheric water vapor and
precipitation will increase with approximately 7% per °C increase in
temperature to the saturation concentrations (Ingram, 2016; Gu
et al., 2017). It means that more water vapor will have better
conditions to generate more precipitation. In this transition, the
wetter storms will either become the wettest or more often, and
ultimately result in the occurrence of heavy precipitation events
more extreme or frequently.

Fig. 13. Projected absolute changes (unit: days) in spatial distribution for CWD and CDD. Columns from left to right are shown as 2020s, 2050s and 2080s,
respectively.
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On the other hand, the future potential changes in monsoon circu-
lation also play a key role in the intensity and frequency of precipitation
extremes over China. Some studies believe that the summer circulation
will be stronger in East Asia, meaning that stronger southwesterly
winds related to the North Pacific subtropical high will increase the
inflow of warm and wet air from low latitudes directed toward the East
Asia region. In addition, the northwesterly winds in winter formed by
Siberian high pressure and Aleutian low pressure are considered more
strengthened in future (Ying and Ding, 2010; Ham et al., 2016). The
consequence of stronger circulations is an increase in evaporation and
moist flux convergence, and further lead to increasing precipitation
over the monsoon region (Seo and Ok, 2013).

In summary, the changes in thermal (i.e., temperature) and dyna-
mical (i.e., circulations) factors could be some physical reasons for the
increase of intensity and frequency in future precipitation over China.

5. Conclusions

In this study, potential changes in precipitation extreme (including
ten indices) over China in response to global warming throughout the
21st century are projected through the PRECIS regional climate mod-
eling system. A perturbed-physics ensemble from the UK Met Office
HadCM3 and ECHAM5 are used to investigate the uncertainties caused
by driving boundary conditions of PRECIS. The spatial resolution of the
PRECIS ensemble simulations is 25 km with the purpose of reflecting
the spatial variations of temperature extremes in the context of China.

During the baseline period (1961–1990), the simulated results are

compared with the gridded climate dataset CN05.1, provided by the
China Meteorological Administration. In general, PRECIS is able to
reasonably reproduce the spatial patterns of current extreme pre-
cipitation over most regions of China for most indices, especially in the
eastern China, though the simulations are overestimated in some parts
of south and underestimated in the northwest and southern edge re-
gions. The performance of PRECIS for frequency indices is better than
that for intensity indices in inter-annual variability, especially for CDD
and R10mm. But this is quite different in spatial variation from the
Taylor diagram.

Future spatiotemporal changes of precipitation extreme indices as
simulated by PRECIS in the 21st century are presented for three suc-
cessive 30-year periods in this paper. Overall, the intensity indices,
including Rx1day, Rx5day, R95pTOT, R99pTOT and SDII, are all pro-
jected to increase during the 21st century. The changes for frequency
indices, including R10mm, R20mm and CWD, are similar to intensity
indices. The CDD is projected to decrease during the 21st century.
These conclusions are corresponding to other studies (Ji and Kang,
2015; Wang et al., 2012). The precipitation-related extreme indices
indicate that it would likely experience more intensified and frequently
extreme precipitation events, implying more risks of flooding on the
whole of China in future. However, there is some regional diversity in
the view of spatial distribution. The absolute changes are relatively
small in north but large in southeast, while it is the opposite for relative
changes. This means that precipitation extremes would have a far more
positive impact in the north, especially in northwest in future. It would
be likely greatly alleviate local drought problem and make this region

Fig. 14. Projected absolute changes in spatial distribution for PRCPTOT (unit: mm) and SDII (unit: mm/day). Columns from left to right are shown as 2020s, 2050s
and 2080s, respectively.
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more suitable for rainfed agriculture. On the other hand, although there
are little percentage changes in southeast, the total rainfall would in-
crease remarkably beyond a reasonable doubt, suggesting there may be
more flooding cases than in the past. Moreover, in the southwest re-
gions, the decreasing CDD and CWD could signal an occurrence risk of
both drought and flooding events, and people would face far bigger
challenges in making adaptation strategies.

In the view of time evolution, except for CDD, all indices show an
increase trend and the rate of increase is larger in the first two periods
of 21st century, especially in the middle, demonstrating that the trends
of precipitation-related indices are affected by future emission scenario.
Moreover, the contributions of the annual very wet day precipitation to
annual total precipitation and number of heavy precipitation days to

total wet days are increasing with time. The ratio of very wet day
precipitation (R95pTOT) to annual total precipitation increment over
China is likely to exceed 50%, and the ratio in heavy rain days and
annual total wet days may be 18% in the early to 21% in the end of this
century for R10mm and 6%–8% for R20mm. The frequency and in-
tensity of heavy rains across the country are projected to increase,
implying that more frequent urban flooding would become a major
challenge for developing resilient and sustainable communities in
China. The changes in thermal (i.e., temperature) and dynamical (i.e.,
circulations) factors could be some physical reasons for the increase of
intensity and frequency in future precipitation.

The ensemble results from our study can provide reliable and high-
resolution climate projections for the entire country of China and can be

Fig. 15. Annual change in 10 precipitation indices averaged over the whole of China. All indices are calculated relative to 1961–1990. Colored lines show MK linear
trends. The blue lines represent trends in future three periods and the red line represents the overall trend. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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used as direct inputs for climate change impact assessment and adap-
tation studies in order to help explore appropriate adaptation strategies
against global climate change at regional and local scales.
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