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lack of insufficient observations and results in more errors 
in climate downscaling. Future spatio-temporal changes 
of extreme temperature indices are then analyzed for three 
successive periods (i.e., 2020s, 2050s and 2080s). The pro-
jected changes in extreme temperatures by PRECIS are 
well consistent with the results of the major global climate 
models in both spatial and temporal patterns. Furthermore, 
the PRECIS demonstrates a distinct superiority in pro-
viding more detailed spatial information of extreme indi-
ces. In general, all extreme indices show similar changes 
in spatial pattern: large changes are projected in the north 
while small changes are projected in the south. In contrast, 
the temporal patterns for all indices vary differently over 
future periods: the warm indices, such as SU, TR, WSDI, 
TX90p, TN90p and GSL are likely to increase, while the 
cold indices, such as ID, FD, CSDI, TX10p and TN10p, are 
likely to decrease with time in response to global warming. 
Nevertheless, the magnitudes of changes in all indices tend 
to decrease gradually with time, indicating the projected 
warming will begin to slow down in the late of this century. 
In addition, the projected range of changes for all indices 
would become larger with time, suggesting more uncertain-
ties would be involved in long-term climate projections.

Keywords Extreme temperature indices · High 
resolution · Regional climate model · Climate change · 
China

1 Introduction

Global warming resulted from increased greenhouse gases 
in the atmosphere has attracted increasing attention due to 
its close correlation with natural disasters (Hartmann et al. 
2014; Meinshausen et  al. 2009). Over the past century, 

Abstract In this study, likely changes in extreme tem-
peratures (including 16 indices) over China in response 
to global warming throughout the twenty-first century are 
investigated through the PRECIS regional climate mod-
eling system. The PRECIS experiment is conducted at a 
spatial resolution of 25  km and is driven by a perturbed-
physics ensemble to reflect spatial variations and model 
uncertainties. Simulations of present climate (1961–1990) 
are compared with observations to validate the model per-
formance in reproducing historical climate over China. 
Results indicate that the PRECIS demonstrates reason-
able skills in reproducing the spatial patterns of observed 
extreme temperatures over the most regions of China, espe-
cially in the east. Nevertheless, the PRECIS shows a rela-
tively poor performance in simulating the spatial patterns of 
extreme temperatures in the western mountainous regions, 
where its driving GCM exhibits more uncertainties due to 
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the frequency and magnitude of natural disasters, such as 
droughts, floods, tropical cyclones and sand storms, have 
shown an increasing trend over the world. This has become 
a common and daunting challenge facing humankind, as 
it often leads to devastating consequences (Diaz 2007; 
Etterson and Shaw 2001; Meinshausen et  al. 2009; Root 
et  al. 2003). Moreover, many studies have suggested that 
the global warming tends to increase in the future, with 
the global average surface temperature rising 0.3–0.48 °C 
by the end of this century (Hartmann et al. 2014). Thus, it 
is important to forecast future climate change at regional 
and local scales to support the assessment of the potential 
impacts of climate extremes, and provide scientific basis 
for developing appropriate adaptation and mitigation meas-
ures. Among many extreme climate events, heat waves 
and cold spells are two typical temperature extreme events 
of particular interest as they often have significant nega-
tive effects on human communities, agroecosystems, and 
the socio-economic development. Projection of potential 
changes in temperature extreme events and development 
of effective adaption strategies are therefore necessary and 
urgent for policy makers and resources managers.

Nowadays, many studies on temperature extremes 
have been reported in different regions of the world, 
such as America (Filahi et al. 2016; Grotjahn et al. 2016; 
Marengo et  al. 2009; Schoof and Robeson 2015), Euro-
pean (Beniston et  al. 2007; Cardil et  al. 2014; Déqué 
2007; Fioravanti et  al. 2016), Asia (Araghi et  al. 2016; 
Iqbal et  al. 2016; Karim and Rahman 2015; Mahmood 
et  al. 2015), Africa (Mason et  al. 1999; Panthou et  al. 
2012) etc. With regard to the research methodology, 
the traditional extreme value theory (EVT) based on 
the return periods or return values is used to simulate 
the tails of statistical distributions, especially better to 
investigate changes in unusual events to some extent. 
Nonetheless, the given climatic time series is analyzed 
on the basis of some critical assumptions that the inten-
sity and frequency of extreme events should follow cer-
tain mathematical distribution (i.e., Gumbel, Fréchet or 
Weibull). On the other hand, alternative approaches are 
introduced by using threshold or percentile exceedances 
metrics. The world climate research programme (WCRP) 
project on expert team on climate change detection and 
indices (ETCCDI) has developed more intuitive indica-
tors to interpret the extreme events easily. Due to its clear 
interpretation and easy employment, the ETCCDI indices 
have been widely accepted and used to compare climate 
extremes simulated from different climate models (Filahi 
et al. 2016; Fioravanti et al. 2016; Kim et al. 2015; Sun 
et  al. 2016). The 16 core temperature extreme indices 
defined by the ETCCDI are described in Table 1. In this 
paper, we follow the classification method used by most 
studies (Jiang et al. 2015; Sun et al. 2016) classify these 

indices into two groups for comparison purpose: warm 
indices and cold indices. As shown in Table  1, warm 
indices include number of summer days (SU), number of 
tropical nights (TR), warm days (TX90p), warm nights 
(TN90p), warm spell duration index (WSDI) and growing 
season length (GSL), while cold indices include number 
of icing days (ID), number of frost days (FD), cold days 
(TX10p), cold nights (TN10p) and cold spell duration 
index (CSDI).

Generally, station observations are often used to statisti-
cally investigate the temporal variation trend as the first real 
data of the past, and the arithmetic mean of values of all 
stations is usually used to represent the entire regional cli-
mate (Filahi et al. 2016; Fioravanti et al. 2016; Jiang et al. 
2015). However, uneven station coverage and missing val-
ues could be the biggest shortcomings, which cannot reflect 
the reality of the entire region, especially in the remote 
areas or complex terrains. On the other hand, the outputs 
from climate models are also often used to analyze the 
future trends of climate extremes in a certain region. For 
example, the projections of global climate models (GCMs) 
are applied to evaluate the impact of climate change on the 
intensity and frequency of temperature extremes in differ-
ent emission scenarios in previous studies (Beharry et  al. 
2015; Kitoh and Endo 2016). However, the coarse reso-
lution of GCMs cannot be competent for simulations at 
regional and local scales, and even there are some biases 
at sub-continental regions. Through downscaling technolo-
gies, such as statistical downscaling and dynamical downs-
caling, deriving the changes in regional and local extremes 
at a higher spatial and temporal resolution is likely to com-
pensate for the deficiencies of GCMs.

Statistical downscaling is conducted to build the his-
torical quantitative relationships between large-scale coarse 
atmospheric variables (predictors) and local weather vari-
ables (predictands), and then apply these relationships to 
produce future climate data. Because of its easy to use, 
low computational expense and various options, statisti-
cal downscaling has been widely used by many researchers 
(Busuioc et  al. 2001; Mahmood and Babel 2014; Timbal 
and Jones 2008; Wang et  al. 2013). For statistical down-
scaling, the quality of the historical data determines the 
performance and robustness of simulation model and some-
times the established math-statistics mapping between 
predictors and predictands may not meet future situations 
due to the excessive dependence on the current climate 
factors. By contrast, with sharing similar physical pro-
cesses and mechanisms as described in GCMs, dynamical 
downscaling nests fine-resolution regional climate mod-
els (RCMs) into GCMs, and the outputs downscaled by 
RCMs with finer-scale surface forcing can produce more 
local or regional detail information, so the results could be 
more credible. Given these benefits, we apply a dynamical 
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downscaling modeling system (PRECIS) in climate simula-
tions and projections over China.

In China, the cold center is located in the north, whereas 
heat waves frequently occur in the southeast, and droughts 
often happen in arid and semi-arid areas of the northwest 
of China. With complex topography and unique climate 
systems, China is one of the countries that are often hit by 
extreme events, and the frequency and intensity of natural 
disasters are on the rise in recent years. For example, from 
2009 to 2010 continuous severe droughts in most parts of 
southern Yunnan province caused considerable losses and 
threats to Chinese economy (LU et al. 2012; Qiu 2010). In 
the early summer of 2008, sudden temperature drop and 
snowstorms caused great damage to agricultural production 
in northern Hebei province.

Many scholars have engaged in temperature extremes 
studies in several typical climatic regions in China, such as 
hot south (Zhang et al. 2016b), cold northeast (Wang et al. 
2016) and the southwest (Qin et al. 2015), main river basin, 
such as Poyang Lake basin (Zhang et  al. 2016a), Yangtze 
River Basin (Guan et  al. 2015) and Yellow River basin 
(Liang et  al. 2014), and other special concerned regions, 
such as Qinling Mountains (Jiang et  al. 2015) and Shi-
jiazhuang station (Bian et  al. 2015). Previous studies on 

temperature extremes in China have shortcomings, such 
as small contained areas, low resolution, short period of 
time and more uncertainty. As an improvement to afore-
mentioned studies, we investigate the possible changes in 
extreme temperatures (including 16 indices) over China in 
response to global warming through the PRECIS regional 
climate modeling system at 25-km spatial resolution. The 
performance of the model is validated by comparison 
with observation data in the baseline period (1961–1990). 
The future changes in the spatial and temporal patterns 
of temperature extremes across the country are analyzed 
afterwards.

2  Data and method

2.1  Observations and validation methods

The maximum and minimum daily temperature observa-
tions are obtained from the gridded climate dataset (SURF_
CLI_CHN_TEM_DAY_GRID_0.5, V2.0), provided by 
National Meteorological Information Center (NMIC), 
China. The dataset is based on a large amount of national 
meteorological stations from 1961, and spatial interpolated 

Table 1  16 ETCCDI extreme temperature indices

These indices are divided into monthly extremal indices, absolute indices, relative indices and spell duration indices. The indices with plus sign 
are warm ones and with minus sign are cold ones

Category Index Descriptive name Definitions Units

Monthly extremal indices TXx Warmest day Monthly maximum value of daily maximum temperature °C
TXn Coldest day Monthly minimum value of daily maximum temperature °C
TNx Warmest night Monthly maximum value of daily minimum temperature °C
TNn Coldest night Monthly minimum value of daily minimum temperature °C

Absolute indices ID Number of icing days (−) Annual count of days when TX (daily maximum temperature) 
<0 °C

Days

FD Number of frost days (−) Annual count of days when TN (daily minimum temperature) 
<0 °C

Days

SU Number of summer days (+) Annual count of days when TX (daily maximum temperature) 
>25 °C

Days

TR Number of tropical nights (+) Annual count of days when TN (daily minimum temperature) 
>20 °C

Days

Relative indices TX10p Cold days (−) Percentage of days when TX <10th percentile of 1961–1990 %days
TX90p Warm days (+) Percentage of days when TX >90th percentile of 1961–1990 %days
TN10p Cold nights (−) Percentage of days when TN <10th percentile of 1961–1990 %days
TN90p Warm nights (+) Percentage of days when TN >90th percentile of 1961–1990 %days

Spell duration indices WSDI Warm spell duration index (+) Annual count of days with at least 6 consecutive days when TX 
>90th percentile

Days

CSDI Cold spell duration index (−) Annual count of days with at least 6 consecutive days when TN 
<10th percentile

Days

GSL Growing season length (+) Annual count between first span of at least 6 days with daily mean 
temperature TG >5 °C and first span after July 1st of 6 days with 
TG <5 °C

Days

DTR Daily temperature range Monthly mean difference between TX and TN °C
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onto spatial grids with 0.5° × 0.5° horizontal resolution 
using a thin plate spline method and three-dimensional 
spatial information technology (see http://data.cma.cn/). 
Here, we extract the data from 1961 to 1990 to represent 
the observations of current climate in the context of China.

In order to quantify and compare the model’s perfor-
mance in simulating the indices from correlations and 
errors, we also calculated the Pearson sample linear cross-
correlation coefficient (PLCC) and the Nash–Sutcliffe effi-
ciency (NSE) between observations and the correspond-
ing model simulations during the baseline period over the 
entire China.

where Xi and Yi represent the observed and simulated val-
ues for each cell grid, X and Y  represent the mean value 
of observation and simulation. Meanwhile, we follow a rat-
ing approach (Khan and Valeo 2016; Moriasi et al. 2007) 
to calculate the rank (i.e., 0, 0.33, 0.66 and 1) for each 16 
indices, and then combine these ranks to give an “average 
rating” (AR) to evaluate the overall performance of PRE-
CIS (Table 2).

2.2  Regional climate modeling and uncertainties

The providing regional climates for impacts studies (PRE-
CIS) is a regional climate modelling system developed by 
the Met Office Hadley Centre. It has been widely used to 
simulate climate change, because of its easy-to-use and 
wide suitability for generating detailed climate change sce-
narios in any area of the globe (Buontempo et  al. 2014; 
Wang et  al. 2015a, b, 2014). As a high-resolution atmos-
phere and land surface regional climate model, PRECIS 
has 50 and 25-km resolutions at the equator of the rotated 
regular latitude-longitude grid and contains 19 levels in 

(1)

PLCC =

∑
(X − X)(Y − Y)

N

��
1

n

∑n

i=1
(Xi − X)2

���
1

n

∑n

i=1
(Yi − Y)2

� ,

(2)NSE = 1 −

∑n

i=1
(Xi − Yi)

2

∑n

i=1
(Xi − X)

2
,

the vertical. The GCM data used to drive PRECIS is pro-
vided by the Hadley Centre’s global atmospheric-only 
model HadAM3P with a horizontal resolution of 3.75° lon-
gitude and 2.5° latitude to generate the regional model’s 
lateral boundary conditions (LBCs), and the land surface 
model employs Met Office Surface Exchange Scheme 2.2 
(MOSES 2.2) (Noguer et al. 2003).

In general, the uncertainties in climate modeling and 
climate change predictions include three aspects: (1) 
Emission scenario. The probabilities of future scenarios, 
whether SRES or RCPs, are not clear since there are inher-
ent uncertainties in the key assumptions and relationships 
about future population, socio-economic development and 
technical changes. (2) Initial conditions. There are large 
differences in the same model and emission scenario, but 
with different initial conditions. (3) Model uncertainty. The 
climate system is complex so that all processes and param-
eters are uncertain in climate models.

These uncertainties influence our understanding towards 
climate change, which could lead to our incorrect or 
incomplete description of key processes and feedbacks in 
climate model. Although these uncertainties are inevita-
ble, they can be quantified by running ensembles of future 
climate projections (Buontempo et  al. 2014; Marengo 
et al. 2009; Murphy et al. 2004; Wang et al. 2015b). Two 
types of model ensemble generation methods are used to 
capture or quantify these uncertainties. The multi-model 
ensemble collects GCM output from different modelling 
centers around the world into a central repository (i.e., 
CMIP3 and CMIP5) to allow inter-model comparisons 
and analysis (Cheng et  al. 2015; Pepler et  al. 2015). This 
method provides the possibility to explore the uncertainty 
range of model, but the disagreements between models can 
be large at regional scales owing to using different struc-
tural choices in model formulation. An alternative route is 
called the “perturbed physics” approach by varying the val-
ues of the parameters in a single model to give the range 
of future outcomes. The advantage of perturbations is that 
variations in model formulation allow us to generate larger 
ensembles to explore nonlinearities and extreme behavior. 
It is also possible to clearly distinguish the effects of some 
prior assumptions by showing the sensitivity of the ensem-
ble output by using different observational constraints and 
experimental designs (Collins et al. 2006).

PRECIS provides an ensemble of perturbed physics 
LBCs, based on the HadCM3 model of Met Office Had-
ley Center for quantifying uncertainty in model projections 
(hereinafter referred to as QUMP) under the IPCC SRES 
A1B emissions scenario. The QUMP ensemble consists of 17 
members (HadCM3Q0-Q16) and each one has a set of per-
turbations to its unique dynamical and physical formulation, 
representing different boundary conditions and climate sensi-
tivity (Mcsweeney et al. 2012). Specifically, HadCM3Q0 is a 

Table 2  Rating table used to quantify the overall model’s perfor-
mance

Average rating Performance

AR > 0.9 Very good
0.66 < AR ≤ 0.9 Good
0.33 < AR ≤ 0.66 Satisfactory
0.0 < AR ≤ 0.33 Unsatisfactory

http://data.cma.cn/
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basic, standard and unperturbed model that uses the original 
parameter settings as applied in the atmospheric component 
of HadCM3, and the other 16 members (Q1-Q16) make dif-
ferent changes in some climate parameters. However, if we 
entirely downscale the 17 members with PRECIS, it would 
be very expensive and requires a lot of computing resources, 
data storage and data analyses. In this study, in order to mini-
mize the requirements while exploring a wide range of uncer-
tainties, we selected Q0 (unperturbed), Q1 (low-sensitivity), 
Q7 (mid-sensitivity), Q10 (mid-sensitivity) and Q13 (high-
sensitivity) from the ensemble of QUMP as LBCs to run 
the PRECIS model from 1950 to 2099 with a 25-km spatial 
resolution.

2.3  Trend and uncertainty analysis methods

As a non-parametric statistically evaluation, Mann–Kendall 
(MK) test is used in trend analysis on extremes, because the 
extreme data series cannot meet the Gaussian distribution 
(Hamed and Rao 1998; Salmi et al. 2002; Sang et al. 2014; 
Zhang et al. 2017). The MK test is based on the test statistic 
S:

where xj and xi are two adjacent values in time series 
with the length of n for each grid, and the sign function is 
defined by:

A positive (negative) value of S indicates an upward 
(downward) trend. For time series with less than 10 data 
points, the S statistic is used; for time series with 10 or more 
data points, the S is approximately normally distributed, with 
the mean E(S) and variance Var(S) as follows:

where ti is the number of data in the tied group and p is the 
number of tied groups. The standardized test statistic Z fol-
lows the standard normal distribution:

(3)S =

n−1∑
i=1

n∑
j=i+1

sgn(xj − xi),

(4)sgn(𝜃) =

⎧
⎪⎨⎪⎩

1, 𝜃 > 0

0, 𝜃 = 0

−1, 𝜃 < 0

.

(5)E(S) = 0,

(6)Var(S) =
n(n − 1)(2n + 5) −

∑p

i=1
ti(ti − 1)(2ti + 5)

18
,

(7)Z =

⎧
⎪⎨⎪⎩

S−1√
var(S)

, S > 0

0, S = 0
S+1√
var(S)

, S < 0

.

The null hypothesis of no trend is accepted if the abso-
lute value of Z is in the theoretical range between −Z1−�∕2 
and Z1−�∕2, where � is the statistical significance level 
concerned.

The magnitude of trends will be calculated by the 
Theil-Sen trend estimation method, which can be more 
accurate than simple linear regression for statistics of 
skewed distribution, and competes well against non-
robust least squares even for normally distributed data 
on the basis of statistical power (Ahmed 2014; Fonseca 
et  al. 2015). The magnitude of change is expressed as a 
percentage of the mean:

where xj and xk are data values at times j and k (j > k), � is 
the Theil-Sen’s estimator of slope.

To have a good characterization of probability projec-
tions, the interval analysis and cumulative distribution 
function (CDF) methods are used to explain the future 
uncertainties, instead of displaying the absolute results 
of each extreme indicator. The probability of future 
temperature extreme changes will be defined as being 
less than or greater than a given amount (Murphy et al. 
2009; Programme 2009; Wang et al. 2014). Specifically, 
a cumulative probability of 10% is used to indicate the 
minimum acceptable level, namely the actual value that 
is very likely to be greater than or very unlikely to be 
less than the given amount. In contrast, the cumulative 
probability of 90% is used to indicate the maximum 
acceptable level, that is, the actual value is very likely to 
be less than or very unlikely to be greater than the cur-
rent given value. In the same way, we regard the value 
with a cumulative probability of 50% as the most likely 
estimate of future projections. In this paper, we calculate 
three cumulative probability levels for each small spa-
tial grid from the model ensemble to analyze their inter-
annual changes.

2.4  Experimental design

The PRECIS ensemble simulations for the whole of 
China are carried out in a continuous run from 1950 to 
2099 at a spatial resolution of 25 km, and then the time 
series is divided into four periods: the baseline period 
(1961–1990) for validation, the 2020s (2020–2040), 
2050s (2041–2070) and 2080s (2071–2099) for pro-
jection. In the baseline period, owing to the different 
resolution between observations and model simula-
tions, we have regridded the simulated results to the 
grid cells from observational datasets (0.5° horizontal 

(8)

� = median

(
xj − xk

j − k

)
, j = 1, 2, .., n k = 1, 2, .., j − 1,
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resolution) to facilitate the comparison. For the choice 
of study domain size, some climatic factors (i.e., sum-
mer and winter monsoon) that have primary effects on 
climate in China will be taken into account. The defini-
tive domain extends from about 66.24°E–139.48°E and 
10.07°N–54.34°N, which is over 38,000 25-km grid 
points in total (Fig.  1). In addition, the added value of 
regional climate modeling is the provision of fine-scale 
regional climate information, which is vital in the sim-
ulation of the frequency distribution of weather events 
and extremes (Torma et al. 2015). Thus, to validate the 
accuracy and credibility of PRECIS, several global cli-
mate models (Table 3) are compared with the projected 
results as well.

3  Results

3.1  Model validation

To examine the performance of the five RCMs in represent-
ing China’s current regional climatologically features of 16 
extreme indices, the average annual simulations using PRE-
CIS ensemble are compared with observations in spatial 
distributions from 1961 to 1990 (As shown Figs.  2, 3, 4, 
5). Overall, the simulated distributions of all extreme indi-
cators suggest that the PRECIS can reasonably reproduce 
the extreme temperature patterns in most regions of China, 
although there are some disagreements in some areas.

The spatial distributions in monthly warmest and cold-
est temperatures: warmest day, coldest day, warmest night 
and coldest night (hereinafter referred to as TXx, TXn, 

Fig. 1  Study domain. Hatched 
lines denote buffer zone area 
which is composed of eight 
grids along the longitude and 
latitude

Table 3  List of the GCMs used 
for comparison in this study

Model name Time span Resolution Institute

BCM2.0 2001–2100 2.8° × 2.8° Bjerknes Centre for Climate Research, Norway
MK3.5 2001–2200 1.875° × 1.875° CSIRO Atmospheric Research, Australia
INMCM3.0 2001–2200 5° × 4° Institute for Numerical Mathematics, Russia
MIROC 3.2 2001–2300 1.125° × 1.122° CCSR/NIES/FRCGC
GISS model 2001–2100 4° × 3° NASA
CCSM 3.0 2000–2099 1.4° × 1.4° NCAR
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TNx and TNn), are shown as in Fig. 2. The results of the 
four simulated indices match well in spatial patterns with 
observations, with the warmest center appeared in the 
southeast and northwest and the coldest center located in 
the northeast and the Tibetan Plateau. For most regions 
of China, the biases between multi-model ensemble mean 

and observations are maintained within in the range of [−2, 
2] °C. However, prominent cold biases are conducted by 
RCMs in the west, especially in the marginal areas of the 
Tibetan Plateau and the south of the Himalayas (about 8 °C 
cold bias). While the monthly maximum temperature indi-
ces (TXx and TXn) are overestimated (about 6 °C) in the 

Fig. 2  Spatial comparisons between simulations and observations over China for the TXx, TXn, TNx and TNn during the baseline period 
(1961–1990). The simulated values are the average of five RCMs ensemble (Q0, Q1, Q7, Q10 and Q13)

Fig. 3  Spatial comparisons between simulations and observations over China for the ID, FD, SU and TR during the baseline period (1961–
1990). The simulated values are the average of five RCMs ensemble (Q0, Q1, Q7, Q10 and Q13)
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northwest of Xinjiang and the monthly minimum tempera-
ture indices (TNx and TNn) exhibit warm biases in parts of 
the northeast and Sichuan region.

Compared with the observations, RCMs can well 
simulate the spatial patterns of four fixed threshold-
based indices, such as ID, FD, SU and TR (Fig.  3). 

Specifically, the simulated summer days (SU) are closer 
to the observed values than the other three indicators. In 
the southeast, the ice days (ID), frost days (FD) and tropi-
cal nights (TR) are slightly underestimated, but overesti-
mated in most western regions, particularly for TR in the 
Tibetan Plateau.

Fig. 4  Spatial comparisons between simulations and observations over China for the CSDI, WSDI, GSL and DTR during the baseline period 
(1961–1990). The simulated values are the average of five RCMs ensemble (Q0, Q1, Q7, Q10 and Q13)

Fig. 5  Spatial comparisons between simulations with observations over China for the TX10, TX90, TN10 and TN90 during the baseline period 
(1961–1990). The simulated values are average of five RCMs ensemble (Q0, Q1, Q7, Q10 and Q13)
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For the four spell duration indices, the results show that 
PRECIS has the ability to capture the distributions of base-
line period in most parts of China (Fig.  4). However, as 
discussed in previous indices, there are some more or less 
biases in some areas. For example, the simulated cold spell 
duration index (CSDI) is a bit shorter than the observed 
value. For the warm spell duration index (WSDI), the satis-
factory results from PRECIS are obtained with a deviation 
of 1–2  days in the central and southwest, but the simula-
tions are underestimated on the southeast regions (~[3, 
4] days). On the maps of the glowing season length (GSL), 
the southern observed GSL is shorter than simulations, 
except for the south of Qinghai. There is a relatively narrow 
daily temperature range (DTR) for simulations in the north 
and the Tibetan Plateau.

When calculating four relative indices, such as cold 
days (TX10p), warm days (TX90p), cold nights (TN10p) 
and warm nights (TN90p), it is desirable first to determine 
the reference time. Since the baseline period is the same as 
the reference time, instead directly of verifying these indi-
ces, we use other alternative percentile indices (i.e., TX10, 
TX90, TN10 and TN90) to test simulated ability. In the 
comparison for TX10 and TX90, the simulated results are 
somewhat larger than the actual ones, especially in most 
parts of Xinjiang. This may be some of the underestima-
tion of the TX10, but the valuation in northern China is too 
high.

In addition, the PLCC and the NSE of each index are 
calculated to validate the performance of PRECIS (Fig. 6). 
Overall, the PLCC values of most indices remain at around 
0.9, indicating the simulations and observations are highly 
correlated. Moreover, all indices have a high NSE value 
except for CSDI, WSDI and DTR. However, the overall 
averaged rating (AR) of 16 indices is 0.81, suggesting the 
simulated results are good according to the defined rating 
table.

In general, PRECIS has the ability to reproduce 16 
temperature extreme indices in spatial distribution dur-
ing the baseline period, and shows better performance 
in eastern China. There are more biases in the west, 

especially in the Tibetan Plateau. Some of the reasons 
that are inconsistent with observations may be partly 
attributed to the lack of observation itself and the uncer-
tainties of LBCs in high topography or isolated areas 
besides from model biases (Yu et al. 2014).

3.2  Changes for extreme indices

Here we divided the simulated results into three con-
tinuous 30-year periods throughout the twenty-first cen-
tury: 2011–2040 (or 2020s), 2041–2070 (or 2050s), and 
2071–2099 (or 2080s). For each extreme index, the pro-
jected spatial and temporal changes for three future peri-
ods are discussed in the following sections. In addition, 
the PRECIS simulations will be compared to other GCMs 
(i.e., BCM2.0, MK3.5) to investigate whether PRECIS 
predictions are consistent with these GCMs and what are 
the added values of PRECIS simulations at regional and 
local scales in the context of China.

3.2.1  Comparison with other GCMs

As shown in Figs. 7 and 8, the results of RCMs ensemble 
are essentially in agreement with the GCMs in the spa-
tial distribution and variability over time. Both RCMs 
and GCMs show the low temperature center in Tibet and 
northeast regions and the high temperature belt from 
northwest to southeast. However, it is clear that the simu-
lations from RCMs ensemble can provide more detailed 
information in spatial distribution, which is ignored or 
omitted in GCMs owing to its low resolution. In terms 
of time, from 2011 to 2099, both have almost a similar 
trend, the daily maximum temperature is expected to 
increase from 15 to 19 °C and the daily minimum temper-
ature would rise from 5 to 10 °C. Nevertheless, the sim-
ulated temperature is slightly lower than GCMs before 
2040, but then it gradually begins to catch up and eventu-
ally get ahead.

Fig. 6  PLCC and NES values 
between simulations and obser-
vations
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Fig. 7  Spatial comparisons between GCMs and RCMs in the daily maximum and minimum temperature. a–c and g–i represent the average of 
GCMs. d–f and j–l represent the average of RCMs ensemble. Columns from left to right are shown as 2020s, 2050s and 2080s, respectively
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3.2.2  Future spatial distribution changes for extreme 
indices

3.2.2.1 Monthly extremal indices Compared with the 
baseline period, four monthly maximum and minimum 
temperature indices show a significant growth trend in the 
next three periods. At the beginning of this century, the 
most likely temperature rise for the warmest day (TXx) and 
warmest night (TNx) over the whole of China would be [1, 
2] °C. The increase of the coldest day (TXn) is relative small 
(only 0.5 °C) in central Yunnan. The TNx and TNn have dis-
tinctive regional patterns, which display higher in the north 
than in the south along latitude, especially for TNn in the 
northwest (about [2.5, 3] °C). In 2050s, the spatial distribu-
tion characteristics are generally similar to that in 2020s, but 
the magnitude of increase is greater. For instance, during 
this period, the TXx and TXn grow at about [3, 4] °C and 
TNx shows the largest increase in south-central China. By 
the late 21th century, the four indices increase will remain 
at around [2, 5] °C but the increments gradually decrease 
relative to the first two periods, particularly in the south. 
However, the TNn shows a great potential increase in north 
in this period ([5.5, 6] °C) (Fig. 9).

3.2.2.2 Fixed threshold‑based indices Another notable 
warming in China is reflected in four fixed threshold-based 
indices. From the early years of the twenty first century, the 
annual icing days (ID) and frost days (FD) will gradually 
decrease, especially in marginal areas of southwest, while 
there is an obvious growing trend for summer days (SU) 

and tropical nights (TR) in some regions of Yunnan. The 
annual durations of ID and FD will be further shortened in 
the middle and late periods. For example, the number of 
these measures will be reduced by about 40 days relative to 
the baseline period in southwest. On the contrary, SU and 
TR in the same region do not change much and the increase 
in these indices is mainly concentrated in the northwest and 
Yunnan (Fig. 10).

3.2.2.3 Spell duration indices In addition to several 
regions, the warm spell duration index (WSDI) and cold 
spell duration index (CSDI) exhibit a rising trend in the 
future but slowing down (about 1  day per year). In the 
2050s, CSDI would be gradual upward in the northeast, 
northwest and parts of Yunnan, while remarkable down-
ward across some areas in Shanxi and Shaanxi. The daily 
temperature range (DTR) will show a decreasing trend in 
the north, but little changes in the south. Compared with 
the 2020s, the northern DTR will keep a trend of decline in 
the next two periods (about 1 °C decrease). Three apparent 
zones are separated from the latitude for the growing season 
length (GSL), namely, the fastest growing in the central, the 
next in the north, and the least in the south. It is worth men-
tioning that the growing season may grow by about 50 days 
in the mid-west regions of China by the end of this century 
(Fig. 11).

3.2.2.4 Percentile‑based indices Compared to the base-
line period, four percentile-based indices, such as cold days 
(TX10p), warm days (TX90p), cold nights (TN10p) and 

Fig. 8  Annual trends between 
GCMs and RCMs in the daily 
maximum and minimum tem-
perature
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Fig. 9  Changes in spatial distribution for the TXx, TXn, TNx and TNn. Columns from left to right are shown as 2020s, 2050s and 2080s, 
respectively
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Fig. 10  Changes in spatial distribution for the ID, FD, SU and TR. Columns from left to right are shown as 2020s, 2050s and 2080s, respec-
tively
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Fig. 11  Changes in spatial distribution for the WSDI, CSDI, DTR and GSL. Columns from left to right are shown as 2020s, 2050s and 2080s, 
respectively
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warm nights (TN90p), will appear to increase for the next 
three periods. These indices will be divided into two catego-
ries according to their trends from 2020s: upward for TX10p 
and TN10p and downward for TX90p and TN90p. TX10p in 
western China will be falling more than the east from 2050s 
and probably remain pretty much the same with the baseline 
period by the end of the century. It is noted that the overall 
tendency of TN10p is in accordance with TX10p, with 7, 

5 and 4% changes in southeast for the next three periods, 
respectively. In contrast, warm days and warm nights indi-
cate a gradually increase. For example, the TX90p will grow 
by 15% in the 2020s, 25% in the 2050s and 30% in the 2080s 
over the southwest. Moreover, the growth of warm nights 
will be more pronounced in the south of Yunnan, Guang-
dong and Guangxi, or even up to 40% (Fig. 12).

Fig. 12  Changes in spatial 
distribution for TX10p, TX90p, 
TN10p and TN90p. Columns 
from left to right are shown 
as 2020s, 2050s and 2080s, 
respectively
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In summary, all extreme indices will have less change 
in the south than most northern areas, where it may expe-
rience milder winter and hotter summers in the future. In 
the context of global warming, both daily maximum and 
minimum temperature begin to rise to a certain extent with 
time. The changes of some extreme indicators, such as ID, 
FD, SU, TR and GSL, are proof of warming from another 
way. Some indices have obvious spatial distribution char-
acteristics. For example, ID, FD and GSL exhibit a larger 
increasing trend in the west than in other regions, while 
SU and TR display decreasing trend, especially in Yunnan. 
Likewise, the results from four percentile-based indices 
demonstrate that the projected changes in extreme tempera-
ture in the north are apparently higher than the changes in 
the west. Nevertheless, the changes in the rest indices (i.e., 
CSDI, WSDI and DTR) are barely perceptible as just men-
tioned ones in space.

3.2.3  Inter‑annual changes for extreme indices

During the first 30-year period, the predictions for TXx, 
TXn, TNx and TNn show that the most likely monthly 
extreme temperature will grow at about 0.05 °C per year 
throughout China. The changes in ID and FD are opposite 
to those of SU and TR. Compared with the baseline period, 
ID and FD have decreased about 10  days in 2011, and 
the number will drop even further with the rate of around 
0.3  day a year. While SU and TR appear an upward ten-
dency, form 8 days in 2011 to 18 days in 2040. Although 
the CSDI shows a slight decrease while WSDI presents an 
increase, the trends for two spell duration indices are not 
obvious in the early years of twenty-first century. As the 
daily maximum and minimum temperatures rise, the DTR 
is almost unchanged relative to the baseline period. How-
ever, the growing season will expand [5, 10] days. The 
four relative indices will increase obviously in 2011, by [5, 
10] % for the cold indexes (i.e., TX10p and TN10p) and 
[10, 17] % for the warm indexes (i.e., TX90p and TN90p). 
From 2011, the TX10p and TN10p will show a decreasing 
tendency while TX90p and TN90p will gradually increase 
with time, especially for TN90p at the annual rate of 
0.216% increase (Fig. 13).

As shown in Fig. 14, the trends for all extreme indices 
in the middle of this century are in agreement with those in 
the former period. For example, the four monthly extreme 
indices (i.e., TXx, TXn, TNx and TNn) will increase [2, 4] 
°C compared to the baseline, while ice days and frost days 
will be reduced by 22 and 32 days, respectively. The WSDI 
and GSL may continue to rise about 3 and 15  days. The 
rate of decline for TX10p and TN10p begin to slow, while 
the corresponding increase rate of TX90p and TN90p will 
be faster in this period.

In the 2080s, the trends for most indices show a clear 
sign of slowness (Fig.  15). Compared with the baseline 
period, the changes of monthly extreme indices seem to be 
maintained within about 4 °C; moreover, ice days and frost 
days will be kept in 25 and 35 days or so. Apart from two 
warm relative indices, other indicators have little change in 
the end of this century. However, it is important to note that 
the distances between 90 and 10% probability levels (gray 
band between two green lines) are larger for most indi-
ces in this period than the first two periods, implying that 
there are more disagreements among models for long-term 
simulations.

Overall, the 16 indices of extreme temperature have 
basically the same tendency in the next three periods, 
though with different rates of change, and in the near-term 
the change rate is highest, a bit lower in mid-term and low-
est in the end of this century. The changes of these indices 
support the conclusion that the temperature is rising over 
the whole of China under the background of global warm-
ing (Table 4).

4  Conclusions

In this study, potential changes in extreme temperatures 
(including 16 indices) over China in response to global 
warming throughout the twenty-first century are inves-
tigated through the PRECIS regional climate modeling 
system. In order to reflect the uncertainties caused by its 
driving boundary conditions, the PRECIS model is driven 
by a perturbed-physics ensemble from the UK Met Office 
HadCM3 model. The spatial resolution of the PRECIS 
ensemble simulations is 25 km with the purpose of reflect-
ing the spatial variations of temperature extremes in the 
context of China.

During the baseline period (1961–1990), the simulated 
results are compared with the observational gridded data 
sets, provided by National Meteorological Information 
Center (NMIC), China. Overall, the results indicate that 
the PRECIS is able to reasonably reproduce the spatial pat-
terns of current extreme temperatures over most regions of 
China, especially in the east. For example, simulated four 
monthly extremal indices (TXx, TXn, TNx and TNn) are 
agreement well with observations in the spatial patterns, 
with average biases keeping in the range of [-2, 2] °C. The 
simulated results for summer days and cold spell duration 
index are satisfactory as well. However, some extreme indi-
ces appear a relatively large difference in the western areas. 
For example, TXx, TXn, TNx and TNn present obvious 
cold biases in the mountainous areas of the Tibetan Plateau 
and southern of the Himalayas. Nevertheless, the projec-
tions of three absolute indices (i.e., ID, FD and TR) are 
apparent overesti
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mated on the same regions. Some reasons for these disa-
greements with observations may be partly attributed to 
the lack of observation itself and the uncertainties of LBCs 
in high topography or isolated areas besides from model 
biases (Yu et al. 2014).

Future spatio-temporal changes of temperature extreme 
indices as simulated by PRECIS for three successive 
30-year periods in the twenty-first century are presented in 
this paper. The results indicate the following aspects:

1. The simulative results from the PRECIS for daily max-
imum and minimum temperature are in good agree-
ment with the outcomes from global climate models 
in both spatial and temporal patterns. Furthermore, it 
is pronounced that the PRECIS demonstrates a distinct 
superiority in providing more small-scale detail fea-
tures especially in the regions of immense complexity.

2. In general, there is a consistent spatial pattern for all 
extreme indices: large changes are projected in the 
north while small changes are projected in the south 
compared with the baseline period. The results show 
that the future ice days and frost days will decrease 
from north to south, while summer days, tropical nights 
and growing season length will increase to different 
degrees. Meanwhile, the findings also suggest that 
there would be a larger increasing trend in temperature 
extremes in the north and west. This is generally con-
sistent with several previous studies (Sun et  al. 2016; 
Zhang et al. 2011; Zhou et al. 2014), however, for some 
indices (i.e., TNn) the increase amplitude (i.e., [5.5, 6] 
°C) is slightly lower than these studies (i.e., exceeding 
7 °C) in the north by the end of the twenty-first century.

3. The temporal patterns for all indices vary differently 
over future periods. Specifically, the warm indices, 
such as SU, TR, WSDI, TX90p, TN90p and GSL are 
likely to increase while some cold indices, such as ID, 
FD, CSDI, TX10P and TN10p, are likely to decrease 
with time relative to the baseline period. These changes 
are strongly consistent with other similar studies in 
other regions regarding their response to global warm-
ing (Alexander et  al. 2006; Choi et  al. 2009; Zhang 
et  al. 2017a), however, this study can provide more 
detail information on future changes in temperature 
extremes in China due to its high-resolution and multi-
model prediction. Although the amplitudes of variation 
are different among the indices in future, the rates of 
changes tend to gradually decrease. For example, the 
TXx increases by 1.544 °C in 2020s, 3.577 °C in 2050s 
and 4.478 °C in 2080s at 50% probability level. In 
addition, the projected ranges of changes for all indi-
ces would become larger with time, suggesting more 
uncertainties would be involved in long-term climate 
projections.Ta

bl
e 

4 
 P

ro
je

ct
ed

 c
ha

ng
es

 fo
r 1

6 
ex

tre
m

e 
in

di
ce

s o
ve

r t
he

 w
ho

le
 o

f C
hi

na
 re

la
tiv

e 
to

 th
e 

ba
se

lin
e 

pe
rio

d 
at

 1
0,

 5
0 

an
d 

90
%

 p
ro

ba
bi

lit
y 

le
ve

ls

M
on

th
ly

 e
xt

re
m

e 
in

di
ce

s
Fi

xe
d 

th
re

sh
ol

d-
ba

se
d 

in
di

ce
s

Sp
el

l d
ur

at
io

n 
in

di
ce

s
Pe

rc
en

til
e-

ba
se

d 
in

di
ce

s

TX
x

TX
n

TN
x

TN
n

ID
FD

SU
TR

C
SD

I
W

SD
I

D
TR

G
SL

TX
10

p
TX

90
p

TN
10

p
TN

90
p

20
20

s
 1

0%
−

1.
72

2
−

2.
31

1
−

1.
24

1
−

1.
54

8
−

19
.8

84
−

23
.1

08
−

2.
01

5
−

0.
07

3
−

2.
92

4
−

2.
65

7
−

1.
05

8
−

1.
58

2.
87

3
13

.3
08

3.
44

0
10

.5
99

 5
0%

1.
54

4
1.

39
5

1.
65

2
1.

83
6

−
9.

08
0

−
12

.1
44

12
.4

86
12

.2
14

0.
75

4
0.

87
0

−
0.

26
4

7.
35

3
5.

99
8

17
.5

21
6.

55
4

14
.8

33
 9

0%
4.

80
8

4.
96

2
4.

53
1

5.
03

6
1.

82
8

−
0.

78
5

25
.4

48
23

.8
77

6.
27

6
6.

50
8

0.
55

3
16

.1
43

9.
60

7
21

.5
63

10
.1

99
19

.0
82

20
50

s
 1

0%
2.

68
4

2.
51

7
2.

85
2

2.
99

1
−

26
.7

41
−

33
.8

44
21

.4
67

21
.4

94
−

2.
14

5
−

1.
46

8
−

0.
76

2
9.

32
6

1.
67

0
22

.3
40

2.
20

3
17

.8
34

 5
0%

3.
57

7
3.

39
4

3.
69

1
3.

99
1

−
19

.9
70

−
26

.7
69

29
.4

51
30

.1
28

0.
55

1
1.

47
2

−
0.

31
2

15
.0

14
3.

13
2

24
.8

94
3.

73
1

20
.7

55
 9

0%
4.

44
5

4.
24

9
4.

47
9

4.
92

0
−

13
.0

20
−

19
.2

68
37

.0
41

37
.9

54
3.

72
9

4.
96

1
0.

14
4

20
.5

79
4.

75
3

27
.3

59
5.

40
3

23
.5

88
20

80
s

 1
0%

2.
81

8
2.

55
8

2.
90

5
3.

20
2

−
34

.8
11

−
44

.7
24

20
.4

74
18

.4
95

−
2.

91
6

−
2.

52
3

−
1.

06
4

8.
95

7
0.

50
7

24
.9

23
0.

95
9

20
.2

31
 5

0%
4.

47
8

4.
10

6
4.

49
1

4.
86

4
−

24
.1

98
−

33
.2

53
35

.5
88

34
.6

08
0.

71
3

1.
02

5
−

0.
32

5
17

.3
67

2.
05

5
28

.9
14

2.
79

6
24

.8
42

 9
0%

6.
11

6
5.

63
6

5.
91

3
6.

40
4

−
12

.4
77

−
21

.4
70

49
.5

87
49

.2
51

6.
05

6
6.

14
2

0.
44

7
25

.7
01

4.
33

8
32

.7
78

5.
39

0
29

.4
86



1065Dynamically-downscaled projections of changes in temperature extremes over China  

1 3

In summary, the results from this paper in providing 
more detailed information at regional and local scales in 
the context of China could be the biggest values compared 
with other studies. The modelling experiment is verified to 
an acceptable level, and the experimental output can pro-
vide resource or economic planners and managers some 
valuable suggestions for the assessment of impacts and 
implementation of adaptation measures in China. In addi-
tion, we also discussed the limitations of the data and pro-
vided information on how to use the maps and output, for 
example, some indices (i.e., CSDI, WSDI and DTR) exist 
greater experimental errors in the certain regions of China, 
and thus the decision to use these data requires careful con-
sideration. Moreover, the multi-model ensemble with high 
resolution is an important pathway for capturing and reduc-
ing uncertainties in climate simulations and projections. 
The methods and routes employed here could extend to 
other extreme indices in different regions.
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